Properties

Label 2-3e4-9.5-c8-0-14
Degree $2$
Conductor $81$
Sign $0.984 - 0.173i$
Analytic cond. $32.9976$
Root an. cond. $5.74435$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−19.4 + 11.2i)2-s + (124 − 214. i)4-s + (−194. − 112. i)5-s + (875 + 1.51e3i)7-s − 179. i·8-s + 5.04e3·10-s + (−6.02e3 + 3.47e3i)11-s + (−1.28e4 + 2.22e4i)13-s + (−3.40e4 − 1.96e4i)14-s + (3.37e4 + 5.84e4i)16-s − 7.48e4i·17-s + 1.89e4·19-s + (−4.82e4 + 2.78e4i)20-s + (7.81e4 − 1.35e5i)22-s + (−4.07e5 − 2.35e5i)23-s + ⋯
L(s)  = 1  + (−1.21 + 0.701i)2-s + (0.484 − 0.838i)4-s + (−0.311 − 0.179i)5-s + (0.364 + 0.631i)7-s − 0.0438i·8-s + 0.504·10-s + (−0.411 + 0.237i)11-s + (−0.450 + 0.780i)13-s + (−0.885 − 0.511i)14-s + (0.515 + 0.892i)16-s − 0.896i·17-s + 0.145·19-s + (−0.301 + 0.173i)20-s + (0.333 − 0.577i)22-s + (−1.45 − 0.840i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.984 - 0.173i$
Analytic conductor: \(32.9976\)
Root analytic conductor: \(5.74435\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :4),\ 0.984 - 0.173i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.659880 + 0.0577321i\)
\(L(\frac12)\) \(\approx\) \(0.659880 + 0.0577321i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (19.4 - 11.2i)T + (128 - 221. i)T^{2} \)
5 \( 1 + (194. + 112. i)T + (1.95e5 + 3.38e5i)T^{2} \)
7 \( 1 + (-875 - 1.51e3i)T + (-2.88e6 + 4.99e6i)T^{2} \)
11 \( 1 + (6.02e3 - 3.47e3i)T + (1.07e8 - 1.85e8i)T^{2} \)
13 \( 1 + (1.28e4 - 2.22e4i)T + (-4.07e8 - 7.06e8i)T^{2} \)
17 \( 1 + 7.48e4iT - 6.97e9T^{2} \)
19 \( 1 - 1.89e4T + 1.69e10T^{2} \)
23 \( 1 + (4.07e5 + 2.35e5i)T + (3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (3.99e5 - 2.30e5i)T + (2.50e11 - 4.33e11i)T^{2} \)
31 \( 1 + (-1.75e5 + 3.04e5i)T + (-4.26e11 - 7.38e11i)T^{2} \)
37 \( 1 - 1.33e6T + 3.51e12T^{2} \)
41 \( 1 + (-1.62e6 - 9.37e5i)T + (3.99e12 + 6.91e12i)T^{2} \)
43 \( 1 + (-1.76e6 - 3.05e6i)T + (-5.84e12 + 1.01e13i)T^{2} \)
47 \( 1 + (-3.53e6 + 2.04e6i)T + (1.19e13 - 2.06e13i)T^{2} \)
53 \( 1 - 6.60e6iT - 6.22e13T^{2} \)
59 \( 1 + (-1.18e7 - 6.85e6i)T + (7.34e13 + 1.27e14i)T^{2} \)
61 \( 1 + (3.76e5 + 6.52e5i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (1.13e6 - 1.96e6i)T + (-2.03e14 - 3.51e14i)T^{2} \)
71 \( 1 + 1.70e7iT - 6.45e14T^{2} \)
73 \( 1 - 2.76e7T + 8.06e14T^{2} \)
79 \( 1 + (-1.14e7 - 1.99e7i)T + (-7.58e14 + 1.31e15i)T^{2} \)
83 \( 1 + (-4.01e7 + 2.31e7i)T + (1.12e15 - 1.95e15i)T^{2} \)
89 \( 1 + 7.26e7iT - 3.93e15T^{2} \)
97 \( 1 + (7.36e7 + 1.27e8i)T + (-3.91e15 + 6.78e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.53911059800234375216215022990, −11.55590808686884334884346506621, −10.11195185361960647541908871515, −9.200875424654462829543551360597, −8.189665942224407446366116575572, −7.32155137525356874015971309843, −5.99810159198207773931778732918, −4.39399955133605347117491956910, −2.21092675827630173278218333157, −0.45842670445318595436787465684, 0.76263154303218937539059003787, 2.14907356405108403945777559391, 3.72642963574617506583762016779, 5.56741581034135348180565652314, 7.55306154539202547676694903213, 8.124201190581286465892162237412, 9.542770807702947580491264480089, 10.46452377159925688304837085530, 11.20203587345832914102932461398, 12.30796861312619917384193903064

Graph of the $Z$-function along the critical line