Properties

Label 2-3e4-81.7-c1-0-2
Degree $2$
Conductor $81$
Sign $0.999 - 0.0274i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.120 − 0.162i)2-s + (1.25 + 1.19i)3-s + (0.561 − 1.87i)4-s + (−0.761 + 0.500i)5-s + (0.0416 − 0.347i)6-s + (−0.112 + 0.119i)7-s + (−0.751 + 0.273i)8-s + (0.157 + 2.99i)9-s + (0.173 + 0.0629i)10-s + (−0.670 + 0.336i)11-s + (2.94 − 1.68i)12-s + (−1.39 − 3.24i)13-s + (0.0329 + 0.00384i)14-s + (−1.55 − 0.278i)15-s + (−3.13 − 2.06i)16-s + (−3.09 + 2.59i)17-s + ⋯
L(s)  = 1  + (−0.0853 − 0.114i)2-s + (0.725 + 0.688i)3-s + (0.280 − 0.938i)4-s + (−0.340 + 0.223i)5-s + (0.0169 − 0.141i)6-s + (−0.0425 + 0.0450i)7-s + (−0.265 + 0.0967i)8-s + (0.0524 + 0.998i)9-s + (0.0547 + 0.0199i)10-s + (−0.202 + 0.101i)11-s + (0.849 − 0.487i)12-s + (−0.388 − 0.899i)13-s + (0.00880 + 0.00102i)14-s + (−0.401 − 0.0719i)15-s + (−0.784 − 0.516i)16-s + (−0.750 + 0.629i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0274i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0274i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.999 - 0.0274i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ 0.999 - 0.0274i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.07549 + 0.0147450i\)
\(L(\frac12)\) \(\approx\) \(1.07549 + 0.0147450i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.25 - 1.19i)T \)
good2 \( 1 + (0.120 + 0.162i)T + (-0.573 + 1.91i)T^{2} \)
5 \( 1 + (0.761 - 0.500i)T + (1.98 - 4.59i)T^{2} \)
7 \( 1 + (0.112 - 0.119i)T + (-0.407 - 6.98i)T^{2} \)
11 \( 1 + (0.670 - 0.336i)T + (6.56 - 8.82i)T^{2} \)
13 \( 1 + (1.39 + 3.24i)T + (-8.92 + 9.45i)T^{2} \)
17 \( 1 + (3.09 - 2.59i)T + (2.95 - 16.7i)T^{2} \)
19 \( 1 + (-1.63 - 1.36i)T + (3.29 + 18.7i)T^{2} \)
23 \( 1 + (5.63 + 5.96i)T + (-1.33 + 22.9i)T^{2} \)
29 \( 1 + (-6.53 + 0.764i)T + (28.2 - 6.68i)T^{2} \)
31 \( 1 + (-5.44 + 1.29i)T + (27.7 - 13.9i)T^{2} \)
37 \( 1 + (-0.783 - 4.44i)T + (-34.7 + 12.6i)T^{2} \)
41 \( 1 + (-6.53 + 8.77i)T + (-11.7 - 39.2i)T^{2} \)
43 \( 1 + (-0.201 + 3.45i)T + (-42.7 - 4.99i)T^{2} \)
47 \( 1 + (-8.68 - 2.05i)T + (42.0 + 21.0i)T^{2} \)
53 \( 1 + (-3.06 - 5.31i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (2.60 + 1.30i)T + (35.2 + 47.3i)T^{2} \)
61 \( 1 + (-2.02 - 6.76i)T + (-50.9 + 33.5i)T^{2} \)
67 \( 1 + (8.82 + 1.03i)T + (65.1 + 15.4i)T^{2} \)
71 \( 1 + (8.94 + 3.25i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (-8.28 + 3.01i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (1.92 + 2.58i)T + (-22.6 + 75.6i)T^{2} \)
83 \( 1 + (10.0 + 13.4i)T + (-23.8 + 79.5i)T^{2} \)
89 \( 1 + (-10.7 + 3.90i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-3.78 - 2.48i)T + (38.4 + 89.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.54202621347378310078031922838, −13.62499803963827728161268262180, −12.09800973027342978107679396463, −10.62951194193598245039934048002, −10.19669066052682829067885753016, −8.883316855562209275951194083489, −7.64146827422871888436675335801, −5.94832368532595159747730829884, −4.43783977964379842579309123150, −2.58868131087763244157985561650, 2.57247655604177086434817743994, 4.16121623921910608745808208292, 6.56112595152419109879396174986, 7.56969611432325607599127502523, 8.467615098603328571456154563451, 9.567799733943535779282997846195, 11.58727059205510376726750058096, 12.16247360614857325314159306010, 13.34911382365756761618494534035, 14.10857738940096067996922742084

Graph of the $Z$-function along the critical line