Properties

Label 2-3e4-81.13-c1-0-7
Degree $2$
Conductor $81$
Sign $-0.0844 + 0.996i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.698 − 0.350i)2-s + (0.295 − 1.70i)3-s + (−0.829 − 1.11i)4-s + (0.424 + 1.41i)5-s + (−0.804 + 1.08i)6-s + (−1.50 − 3.49i)7-s + (0.459 + 2.60i)8-s + (−2.82 − 1.00i)9-s + (0.200 − 1.13i)10-s + (4.91 − 1.16i)11-s + (−2.14 + 1.08i)12-s + (3.75 + 2.46i)13-s + (−0.172 + 2.96i)14-s + (2.54 − 0.305i)15-s + (−0.203 + 0.678i)16-s + (−4.30 + 1.56i)17-s + ⋯
L(s)  = 1  + (−0.493 − 0.248i)2-s + (0.170 − 0.985i)3-s + (−0.414 − 0.557i)4-s + (0.189 + 0.634i)5-s + (−0.328 + 0.444i)6-s + (−0.569 − 1.31i)7-s + (0.162 + 0.922i)8-s + (−0.941 − 0.336i)9-s + (0.0635 − 0.360i)10-s + (1.48 − 0.351i)11-s + (−0.619 + 0.313i)12-s + (1.04 + 0.684i)13-s + (−0.0461 + 0.792i)14-s + (0.657 − 0.0789i)15-s + (−0.0507 + 0.169i)16-s + (−1.04 + 0.380i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0844 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0844 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-0.0844 + 0.996i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ -0.0844 + 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.496281 - 0.540096i\)
\(L(\frac12)\) \(\approx\) \(0.496281 - 0.540096i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.295 + 1.70i)T \)
good2 \( 1 + (0.698 + 0.350i)T + (1.19 + 1.60i)T^{2} \)
5 \( 1 + (-0.424 - 1.41i)T + (-4.17 + 2.74i)T^{2} \)
7 \( 1 + (1.50 + 3.49i)T + (-4.80 + 5.09i)T^{2} \)
11 \( 1 + (-4.91 + 1.16i)T + (9.82 - 4.93i)T^{2} \)
13 \( 1 + (-3.75 - 2.46i)T + (5.14 + 11.9i)T^{2} \)
17 \( 1 + (4.30 - 1.56i)T + (13.0 - 10.9i)T^{2} \)
19 \( 1 + (-4.19 - 1.52i)T + (14.5 + 12.2i)T^{2} \)
23 \( 1 + (1.36 - 3.17i)T + (-15.7 - 16.7i)T^{2} \)
29 \( 1 + (0.0379 + 0.651i)T + (-28.8 + 3.36i)T^{2} \)
31 \( 1 + (0.653 - 0.0764i)T + (30.1 - 7.14i)T^{2} \)
37 \( 1 + (-0.766 - 0.642i)T + (6.42 + 36.4i)T^{2} \)
41 \( 1 + (0.610 - 0.306i)T + (24.4 - 32.8i)T^{2} \)
43 \( 1 + (5.75 + 6.10i)T + (-2.50 + 42.9i)T^{2} \)
47 \( 1 + (7.88 + 0.921i)T + (45.7 + 10.8i)T^{2} \)
53 \( 1 + (2.07 - 3.59i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-5.12 - 1.21i)T + (52.7 + 26.4i)T^{2} \)
61 \( 1 + (4.05 - 5.44i)T + (-17.4 - 58.4i)T^{2} \)
67 \( 1 + (0.308 - 5.29i)T + (-66.5 - 7.77i)T^{2} \)
71 \( 1 + (1.06 - 6.03i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (0.764 + 4.33i)T + (-68.5 + 24.9i)T^{2} \)
79 \( 1 + (-10.0 - 5.04i)T + (47.1 + 63.3i)T^{2} \)
83 \( 1 + (-1.44 - 0.727i)T + (49.5 + 66.5i)T^{2} \)
89 \( 1 + (0.181 + 1.02i)T + (-83.6 + 30.4i)T^{2} \)
97 \( 1 + (1.43 - 4.77i)T + (-81.0 - 53.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.80148944045719921771933985914, −13.49879495173819428226383899920, −11.66425597579579282209959142288, −10.82127686966203974549450364808, −9.580309265276553322930751335974, −8.545986947317009806529104632011, −6.95469882794567096760772364256, −6.20716105423918308507922175325, −3.77183149691555731189488387005, −1.36100808130734169910796253745, 3.35952941383070042113607964458, 4.84246320891479655791182688482, 6.38720369305874499358519301729, 8.419302666554150289974348568480, 9.086961628229796765628304337304, 9.633697596199545228333293992697, 11.40424308243623245463113444816, 12.50089246117416384816828229687, 13.54298242572879788777540643851, 14.94434381239569772889098973419

Graph of the $Z$-function along the critical line