Properties

Label 2-3e4-9.4-c11-0-9
Degree $2$
Conductor $81$
Sign $0.173 + 0.984i$
Analytic cond. $62.2357$
Root an. cond. $7.88896$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (39 + 67.5i)2-s + (−2.01e3 + 3.49e3i)4-s + (−2.68e3 + 4.65e3i)5-s + (1.38e4 + 2.40e4i)7-s − 1.55e5·8-s − 4.18e5·10-s + (3.18e5 + 5.52e5i)11-s + (−3.83e5 + 6.63e5i)13-s + (−1.08e6 + 1.87e6i)14-s + (−1.91e6 − 3.31e6i)16-s − 3.08e6·17-s − 1.95e7·19-s + (−1.08e7 − 1.87e7i)20-s + (−2.48e7 + 4.30e7i)22-s + (7.65e6 − 1.32e7i)23-s + ⋯
L(s)  = 1  + (0.861 + 1.49i)2-s + (−0.985 + 1.70i)4-s + (−0.384 + 0.665i)5-s + (0.312 + 0.540i)7-s − 1.67·8-s − 1.32·10-s + (0.597 + 1.03i)11-s + (−0.286 + 0.495i)13-s + (−0.537 + 0.931i)14-s + (−0.456 − 0.790i)16-s − 0.526·17-s − 1.80·19-s + (−0.757 − 1.31i)20-s + (−1.02 + 1.78i)22-s + (0.248 − 0.429i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.173 + 0.984i$
Analytic conductor: \(62.2357\)
Root analytic conductor: \(7.88896\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :11/2),\ 0.173 + 0.984i)\)

Particular Values

\(L(6)\) \(\approx\) \(1.53246 - 1.28588i\)
\(L(\frac12)\) \(\approx\) \(1.53246 - 1.28588i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-39 - 67.5i)T + (-1.02e3 + 1.77e3i)T^{2} \)
5 \( 1 + (2.68e3 - 4.65e3i)T + (-2.44e7 - 4.22e7i)T^{2} \)
7 \( 1 + (-1.38e4 - 2.40e4i)T + (-9.88e8 + 1.71e9i)T^{2} \)
11 \( 1 + (-3.18e5 - 5.52e5i)T + (-1.42e11 + 2.47e11i)T^{2} \)
13 \( 1 + (3.83e5 - 6.63e5i)T + (-8.96e11 - 1.55e12i)T^{2} \)
17 \( 1 + 3.08e6T + 3.42e13T^{2} \)
19 \( 1 + 1.95e7T + 1.16e14T^{2} \)
23 \( 1 + (-7.65e6 + 1.32e7i)T + (-4.76e14 - 8.25e14i)T^{2} \)
29 \( 1 + (-5.37e6 - 9.31e6i)T + (-6.10e15 + 1.05e16i)T^{2} \)
31 \( 1 + (-2.54e7 + 4.41e7i)T + (-1.27e16 - 2.20e16i)T^{2} \)
37 \( 1 - 6.64e8T + 1.77e17T^{2} \)
41 \( 1 + (-4.49e8 + 7.78e8i)T + (-2.75e17 - 4.76e17i)T^{2} \)
43 \( 1 + (-4.78e8 - 8.29e8i)T + (-4.64e17 + 8.04e17i)T^{2} \)
47 \( 1 + (7.77e8 + 1.34e9i)T + (-1.23e18 + 2.14e18i)T^{2} \)
53 \( 1 + 3.79e9T + 9.26e18T^{2} \)
59 \( 1 + (-2.77e8 + 4.80e8i)T + (-1.50e19 - 2.61e19i)T^{2} \)
61 \( 1 + (2.47e9 + 4.28e9i)T + (-2.17e19 + 3.76e19i)T^{2} \)
67 \( 1 + (2.64e9 - 4.58e9i)T + (-6.10e19 - 1.05e20i)T^{2} \)
71 \( 1 - 1.48e10T + 2.31e20T^{2} \)
73 \( 1 - 1.39e10T + 3.13e20T^{2} \)
79 \( 1 + (1.86e9 + 3.22e9i)T + (-3.73e20 + 6.47e20i)T^{2} \)
83 \( 1 + (-4.38e9 - 7.59e9i)T + (-6.43e20 + 1.11e21i)T^{2} \)
89 \( 1 - 2.54e10T + 2.77e21T^{2} \)
97 \( 1 + (-1.95e10 - 3.38e10i)T + (-3.57e21 + 6.19e21i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11215664602385107194272977196, −12.24899929254597359429373322056, −10.97022500519927352512357603502, −9.214647357935758646938249326612, −8.062697900965566829609063336082, −6.95191229657837817845357266693, −6.29843651556212874023769557961, −4.79888170807912448746529478546, −3.99655996671882731014820617686, −2.26463857484741169562861023511, 0.38116024685868552508610705155, 1.27372012588068908729071916165, 2.69818216519492721293403845827, 4.01368461311301499920948955531, 4.68955135337533552514672721750, 6.15498479276903752156961097800, 8.124242050128200712634844298775, 9.310115664869278777501182440321, 10.69896395328426401811706637753, 11.25156076254746166998604602883

Graph of the $Z$-function along the critical line