Properties

Label 4-3e8-1.1-c11e2-0-1
Degree $4$
Conductor $6561$
Sign $1$
Analytic cond. $3873.29$
Root an. cond. $7.88896$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 78·2-s + 2.04e3·4-s − 5.37e3·5-s + 2.77e4·7-s + 4.68e3·8-s − 4.18e5·10-s + 6.37e5·11-s − 7.66e5·13-s + 2.16e6·14-s + 3.65e5·16-s − 6.16e6·17-s − 3.90e7·19-s − 1.09e7·20-s + 4.97e7·22-s + 1.53e7·23-s + 4.88e7·25-s − 5.97e7·26-s + 5.68e7·28-s + 1.07e7·29-s + 5.09e7·31-s + 9.58e6·32-s − 4.81e8·34-s − 1.49e8·35-s + 1.32e9·37-s − 3.04e9·38-s − 2.51e7·40-s + 8.98e8·41-s + ⋯
L(s)  = 1  + 1.72·2-s + 4-s − 0.768·5-s + 0.624·7-s + 0.0504·8-s − 1.32·10-s + 1.19·11-s − 0.572·13-s + 1.07·14-s + 0.0870·16-s − 1.05·17-s − 3.61·19-s − 0.768·20-s + 2.05·22-s + 0.496·23-s + 25-s − 0.986·26-s + 0.624·28-s + 0.0973·29-s + 0.319·31-s + 0.0504·32-s − 1.81·34-s − 0.479·35-s + 3.15·37-s − 6.23·38-s − 0.0388·40-s + 1.21·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6561\)    =    \(3^{8}\)
Sign: $1$
Analytic conductor: \(3873.29\)
Root analytic conductor: \(7.88896\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6561,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(4.001956212\)
\(L(\frac12)\) \(\approx\) \(4.001956212\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2^2$ \( 1 - 39 p T + 1009 p^{2} T^{2} - 39 p^{12} T^{3} + p^{22} T^{4} \)
5$C_2^2$ \( 1 + 1074 p T - 799649 p^{2} T^{2} + 1074 p^{12} T^{3} + p^{22} T^{4} \)
7$C_2^2$ \( 1 - 27760 T - 1206709143 T^{2} - 27760 p^{11} T^{3} + p^{22} T^{4} \)
11$C_2^2$ \( 1 - 637836 T + 121523092285 T^{2} - 637836 p^{11} T^{3} + p^{22} T^{4} \)
13$C_2^2$ \( 1 + 766214 T - 1205076500241 T^{2} + 766214 p^{11} T^{3} + p^{22} T^{4} \)
17$C_2$ \( ( 1 + 3084354 T + p^{11} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 1026916 p T + p^{11} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 15312360 T - 718341389144327 T^{2} - 15312360 p^{11} T^{3} + p^{22} T^{4} \)
29$C_2^2$ \( 1 - 10751262 T - 12084920131113185 T^{2} - 10751262 p^{11} T^{3} + p^{22} T^{4} \)
31$C_2^2$ \( 1 - 50937400 T - 22813858177644831 T^{2} - 50937400 p^{11} T^{3} + p^{22} T^{4} \)
37$C_2$ \( ( 1 - 664740830 T + p^{11} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 898833450 T + 257572539122654059 T^{2} - 898833450 p^{11} T^{3} + p^{22} T^{4} \)
43$C_2^2$ \( 1 - 957947188 T - 11630924474115363 T^{2} - 957947188 p^{11} T^{3} + p^{22} T^{4} \)
47$C_2^2$ \( 1 + 1555741344 T - 51828085653085967 T^{2} + 1555741344 p^{11} T^{3} + p^{22} T^{4} \)
53$C_2$ \( ( 1 + 3792417030 T + p^{11} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 555306924 T - 29847522664895500883 T^{2} - 555306924 p^{11} T^{3} + p^{22} T^{4} \)
61$C_2^2$ \( 1 + 4950420998 T - 19007249553996522657 T^{2} + 4950420998 p^{11} T^{3} + p^{22} T^{4} \)
67$C_2^2$ \( 1 + 5292399284 T - 94120642723684304427 T^{2} + 5292399284 p^{11} T^{3} + p^{22} T^{4} \)
71$C_2$ \( ( 1 - 14831086248 T + p^{11} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 13971005210 T + p^{11} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 3720542360 T - \)\(73\!\cdots\!79\)\( T^{2} + 3720542360 p^{11} T^{3} + p^{22} T^{4} \)
83$C_2^2$ \( 1 - 8768454036 T - \)\(12\!\cdots\!71\)\( T^{2} - 8768454036 p^{11} T^{3} + p^{22} T^{4} \)
89$C_2$ \( ( 1 - 25472769174 T + p^{11} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 39092494846 T - \)\(56\!\cdots\!37\)\( T^{2} - 39092494846 p^{11} T^{3} + p^{22} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11215664602385107194272977196, −12.24899929254597359429373322056, −11.25156076254746166998604602883, −10.97022500519927352512357603502, −10.69896395328426401811706637753, −9.310115664869278777501182440321, −9.214647357935758646938249326612, −8.124242050128200712634844298775, −8.062697900965566829609063336082, −6.95191229657837817845357266693, −6.29843651556212874023769557961, −6.15498479276903752156961097800, −4.79888170807912448746529478546, −4.68955135337533552514672721750, −4.01368461311301499920948955531, −3.99655996671882731014820617686, −2.69818216519492721293403845827, −2.26463857484741169562861023511, −1.27372012588068908729071916165, −0.38116024685868552508610705155, 0.38116024685868552508610705155, 1.27372012588068908729071916165, 2.26463857484741169562861023511, 2.69818216519492721293403845827, 3.99655996671882731014820617686, 4.01368461311301499920948955531, 4.68955135337533552514672721750, 4.79888170807912448746529478546, 6.15498479276903752156961097800, 6.29843651556212874023769557961, 6.95191229657837817845357266693, 8.062697900965566829609063336082, 8.124242050128200712634844298775, 9.214647357935758646938249326612, 9.310115664869278777501182440321, 10.69896395328426401811706637753, 10.97022500519927352512357603502, 11.25156076254746166998604602883, 12.24899929254597359429373322056, 13.11215664602385107194272977196

Graph of the $Z$-function along the critical line