Properties

Label 2-3e4-9.2-c10-0-14
Degree $2$
Conductor $81$
Sign $0.342 + 0.939i$
Analytic cond. $51.4639$
Root an. cond. $7.17383$
Motivic weight $10$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−20.3 − 11.7i)2-s + (−234. − 406. i)4-s + (−3.83e3 + 2.21e3i)5-s + (1.07e4 − 1.86e4i)7-s + 3.51e4i·8-s + 1.04e5·10-s + (−2.10e5 − 1.21e5i)11-s + (1.99e5 + 3.44e5i)13-s + (−4.39e5 + 2.53e5i)14-s + (1.73e5 − 3.00e5i)16-s + 2.02e6i·17-s − 2.77e6·19-s + (1.79e6 + 1.03e6i)20-s + (2.85e6 + 4.95e6i)22-s + (−2.14e6 + 1.23e6i)23-s + ⋯
L(s)  = 1  + (−0.637 − 0.367i)2-s + (−0.229 − 0.397i)4-s + (−1.22 + 0.707i)5-s + (0.641 − 1.11i)7-s + 1.07i·8-s + 1.04·10-s + (−1.30 − 0.753i)11-s + (0.536 + 0.928i)13-s + (−0.817 + 0.472i)14-s + (0.165 − 0.286i)16-s + 1.42i·17-s − 1.11·19-s + (0.562 + 0.324i)20-s + (0.554 + 0.960i)22-s + (−0.333 + 0.192i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.342 + 0.939i$
Analytic conductor: \(51.4639\)
Root analytic conductor: \(7.17383\)
Motivic weight: \(10\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :5),\ 0.342 + 0.939i)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(0.453088 - 0.317256i\)
\(L(\frac12)\) \(\approx\) \(0.453088 - 0.317256i\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (20.3 + 11.7i)T + (512 + 886. i)T^{2} \)
5 \( 1 + (3.83e3 - 2.21e3i)T + (4.88e6 - 8.45e6i)T^{2} \)
7 \( 1 + (-1.07e4 + 1.86e4i)T + (-1.41e8 - 2.44e8i)T^{2} \)
11 \( 1 + (2.10e5 + 1.21e5i)T + (1.29e10 + 2.24e10i)T^{2} \)
13 \( 1 + (-1.99e5 - 3.44e5i)T + (-6.89e10 + 1.19e11i)T^{2} \)
17 \( 1 - 2.02e6iT - 2.01e12T^{2} \)
19 \( 1 + 2.77e6T + 6.13e12T^{2} \)
23 \( 1 + (2.14e6 - 1.23e6i)T + (2.07e13 - 3.58e13i)T^{2} \)
29 \( 1 + (-7.90e6 - 4.56e6i)T + (2.10e14 + 3.64e14i)T^{2} \)
31 \( 1 + (-9.07e6 - 1.57e7i)T + (-4.09e14 + 7.09e14i)T^{2} \)
37 \( 1 - 1.14e7T + 4.80e15T^{2} \)
41 \( 1 + (1.18e8 - 6.85e7i)T + (6.71e15 - 1.16e16i)T^{2} \)
43 \( 1 + (4.93e7 - 8.55e7i)T + (-1.08e16 - 1.87e16i)T^{2} \)
47 \( 1 + (1.22e8 + 7.09e7i)T + (2.62e16 + 4.55e16i)T^{2} \)
53 \( 1 + 1.39e8iT - 1.74e17T^{2} \)
59 \( 1 + (-9.24e8 + 5.33e8i)T + (2.55e17 - 4.42e17i)T^{2} \)
61 \( 1 + (-7.24e8 + 1.25e9i)T + (-3.56e17 - 6.17e17i)T^{2} \)
67 \( 1 + (7.23e8 + 1.25e9i)T + (-9.11e17 + 1.57e18i)T^{2} \)
71 \( 1 + 1.33e9iT - 3.25e18T^{2} \)
73 \( 1 + 1.46e9T + 4.29e18T^{2} \)
79 \( 1 + (-2.47e9 + 4.29e9i)T + (-4.73e18 - 8.19e18i)T^{2} \)
83 \( 1 + (4.85e8 + 2.80e8i)T + (7.75e18 + 1.34e19i)T^{2} \)
89 \( 1 + 4.73e9iT - 3.11e19T^{2} \)
97 \( 1 + (6.08e9 - 1.05e10i)T + (-3.68e19 - 6.38e19i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.52497726240081677688415793831, −10.81779029711110319352800783529, −10.32912042940994169233873548653, −8.423233803830936354078492773697, −7.958291650030789443803648040011, −6.46168388573289327321565110310, −4.69448309122513171040056053618, −3.55037730530316578161733530815, −1.76172614879010536787154715094, −0.36102635367082589484062159624, 0.56342235063319818280436791010, 2.62438791710893650431194997036, 4.26063501502519282918951844822, 5.31200522295194294018613764977, 7.28755872801906348748939824101, 8.249878214601085217154183457968, 8.617174077215711590429194118886, 10.10580415823092027660900202789, 11.62707089926845934672389547001, 12.42174243900286374978156892973

Graph of the $Z$-function along the critical line