Properties

Label 16-8046e8-1.1-c1e8-0-1
Degree $16$
Conductor $1.756\times 10^{31}$
Sign $1$
Analytic cond. $2.90306\times 10^{14}$
Root an. cond. $8.01546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $8$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 36·4-s − 5·7-s + 120·8-s − 6·11-s − 8·13-s − 40·14-s + 330·16-s + 5·17-s − 14·19-s − 48·22-s − 21·23-s − 23·25-s − 64·26-s − 180·28-s − 3·29-s − 4·31-s + 792·32-s + 40·34-s − 3·37-s − 112·38-s − 7·41-s − 12·43-s − 216·44-s − 168·46-s − 25·47-s − 19·49-s + ⋯
L(s)  = 1  + 5.65·2-s + 18·4-s − 1.88·7-s + 42.4·8-s − 1.80·11-s − 2.21·13-s − 10.6·14-s + 82.5·16-s + 1.21·17-s − 3.21·19-s − 10.2·22-s − 4.37·23-s − 4.59·25-s − 12.5·26-s − 34.0·28-s − 0.557·29-s − 0.718·31-s + 140.·32-s + 6.85·34-s − 0.493·37-s − 18.1·38-s − 1.09·41-s − 1.82·43-s − 32.5·44-s − 24.7·46-s − 3.64·47-s − 2.71·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{24} \cdot 149^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{24} \cdot 149^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{24} \cdot 149^{8}\)
Sign: $1$
Analytic conductor: \(2.90306\times 10^{14}\)
Root analytic conductor: \(8.01546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(8\)
Selberg data: \((16,\ 2^{8} \cdot 3^{24} \cdot 149^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T )^{8} \)
3 \( 1 \)
149 \( ( 1 - T )^{8} \)
good5 \( 1 + 23 T^{2} + 2 T^{3} + 261 T^{4} + 68 T^{5} + 1964 T^{6} + 734 T^{7} + 11099 T^{8} + 734 p T^{9} + 1964 p^{2} T^{10} + 68 p^{3} T^{11} + 261 p^{4} T^{12} + 2 p^{5} T^{13} + 23 p^{6} T^{14} + p^{8} T^{16} \)
7 \( 1 + 5 T + 44 T^{2} + 164 T^{3} + 122 p T^{4} + 2581 T^{5} + 208 p^{2} T^{6} + 25906 T^{7} + 84279 T^{8} + 25906 p T^{9} + 208 p^{4} T^{10} + 2581 p^{3} T^{11} + 122 p^{5} T^{12} + 164 p^{5} T^{13} + 44 p^{6} T^{14} + 5 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 + 6 T + 69 T^{2} + 320 T^{3} + 2012 T^{4} + 7675 T^{5} + 34896 T^{6} + 115513 T^{7} + 435155 T^{8} + 115513 p T^{9} + 34896 p^{2} T^{10} + 7675 p^{3} T^{11} + 2012 p^{4} T^{12} + 320 p^{5} T^{13} + 69 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 + 8 T + 84 T^{2} + 448 T^{3} + 2738 T^{4} + 10836 T^{5} + 50511 T^{6} + 166032 T^{7} + 700113 T^{8} + 166032 p T^{9} + 50511 p^{2} T^{10} + 10836 p^{3} T^{11} + 2738 p^{4} T^{12} + 448 p^{5} T^{13} + 84 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 - 5 T + 98 T^{2} - 386 T^{3} + 4323 T^{4} - 14035 T^{5} + 119347 T^{6} - 330216 T^{7} + 2354845 T^{8} - 330216 p T^{9} + 119347 p^{2} T^{10} - 14035 p^{3} T^{11} + 4323 p^{4} T^{12} - 386 p^{5} T^{13} + 98 p^{6} T^{14} - 5 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 + 14 T + 189 T^{2} + 1675 T^{3} + 13551 T^{4} + 88651 T^{5} + 528103 T^{6} + 2701748 T^{7} + 12614699 T^{8} + 2701748 p T^{9} + 528103 p^{2} T^{10} + 88651 p^{3} T^{11} + 13551 p^{4} T^{12} + 1675 p^{5} T^{13} + 189 p^{6} T^{14} + 14 p^{7} T^{15} + p^{8} T^{16} \)
23 \( 1 + 21 T + 315 T^{2} + 3351 T^{3} + 29840 T^{4} + 220880 T^{5} + 1441926 T^{6} + 8201727 T^{7} + 41898423 T^{8} + 8201727 p T^{9} + 1441926 p^{2} T^{10} + 220880 p^{3} T^{11} + 29840 p^{4} T^{12} + 3351 p^{5} T^{13} + 315 p^{6} T^{14} + 21 p^{7} T^{15} + p^{8} T^{16} \)
29 \( 1 + 3 T + 4 p T^{2} + 257 T^{3} + 5913 T^{4} + 5002 T^{5} + 188655 T^{6} - 144119 T^{7} + 5241187 T^{8} - 144119 p T^{9} + 188655 p^{2} T^{10} + 5002 p^{3} T^{11} + 5913 p^{4} T^{12} + 257 p^{5} T^{13} + 4 p^{7} T^{14} + 3 p^{7} T^{15} + p^{8} T^{16} \)
31 \( 1 + 4 T + 143 T^{2} + 277 T^{3} + 9440 T^{4} + 5823 T^{5} + 413774 T^{6} - 77032 T^{7} + 14007581 T^{8} - 77032 p T^{9} + 413774 p^{2} T^{10} + 5823 p^{3} T^{11} + 9440 p^{4} T^{12} + 277 p^{5} T^{13} + 143 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 + 3 T + 157 T^{2} + 169 T^{3} + 10925 T^{4} - 4578 T^{5} + 520980 T^{6} - 602386 T^{7} + 20795125 T^{8} - 602386 p T^{9} + 520980 p^{2} T^{10} - 4578 p^{3} T^{11} + 10925 p^{4} T^{12} + 169 p^{5} T^{13} + 157 p^{6} T^{14} + 3 p^{7} T^{15} + p^{8} T^{16} \)
41 \( 1 + 7 T + 221 T^{2} + 1651 T^{3} + 22651 T^{4} + 175892 T^{5} + 1468078 T^{6} + 11131140 T^{7} + 69043319 T^{8} + 11131140 p T^{9} + 1468078 p^{2} T^{10} + 175892 p^{3} T^{11} + 22651 p^{4} T^{12} + 1651 p^{5} T^{13} + 221 p^{6} T^{14} + 7 p^{7} T^{15} + p^{8} T^{16} \)
43 \( 1 + 12 T + 268 T^{2} + 2841 T^{3} + 34765 T^{4} + 312940 T^{5} + 2760526 T^{6} + 20722959 T^{7} + 144745419 T^{8} + 20722959 p T^{9} + 2760526 p^{2} T^{10} + 312940 p^{3} T^{11} + 34765 p^{4} T^{12} + 2841 p^{5} T^{13} + 268 p^{6} T^{14} + 12 p^{7} T^{15} + p^{8} T^{16} \)
47 \( 1 + 25 T + 534 T^{2} + 7809 T^{3} + 2117 p T^{4} + 1049944 T^{5} + 9811105 T^{6} + 80167517 T^{7} + 583909437 T^{8} + 80167517 p T^{9} + 9811105 p^{2} T^{10} + 1049944 p^{3} T^{11} + 2117 p^{5} T^{12} + 7809 p^{5} T^{13} + 534 p^{6} T^{14} + 25 p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 + 3 T + 259 T^{2} + 671 T^{3} + 33140 T^{4} + 76472 T^{5} + 2800566 T^{6} + 110221 p T^{7} + 172037347 T^{8} + 110221 p^{2} T^{9} + 2800566 p^{2} T^{10} + 76472 p^{3} T^{11} + 33140 p^{4} T^{12} + 671 p^{5} T^{13} + 259 p^{6} T^{14} + 3 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 + 2 T + 187 T^{2} + 781 T^{3} + 15293 T^{4} + 93219 T^{5} + 839319 T^{6} + 6407678 T^{7} + 44695837 T^{8} + 6407678 p T^{9} + 839319 p^{2} T^{10} + 93219 p^{3} T^{11} + 15293 p^{4} T^{12} + 781 p^{5} T^{13} + 187 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 + 17 T + 287 T^{2} + 3211 T^{3} + 40377 T^{4} + 388503 T^{5} + 3878930 T^{6} + 31804176 T^{7} + 272510093 T^{8} + 31804176 p T^{9} + 3878930 p^{2} T^{10} + 388503 p^{3} T^{11} + 40377 p^{4} T^{12} + 3211 p^{5} T^{13} + 287 p^{6} T^{14} + 17 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 + 14 T + 325 T^{2} + 3419 T^{3} + 55257 T^{4} + 492865 T^{5} + 6126075 T^{6} + 46584916 T^{7} + 484079105 T^{8} + 46584916 p T^{9} + 6126075 p^{2} T^{10} + 492865 p^{3} T^{11} + 55257 p^{4} T^{12} + 3419 p^{5} T^{13} + 325 p^{6} T^{14} + 14 p^{7} T^{15} + p^{8} T^{16} \)
71 \( 1 + 7 T + 376 T^{2} + 2079 T^{3} + 67454 T^{4} + 298691 T^{5} + 7720851 T^{6} + 28228478 T^{7} + 635043539 T^{8} + 28228478 p T^{9} + 7720851 p^{2} T^{10} + 298691 p^{3} T^{11} + 67454 p^{4} T^{12} + 2079 p^{5} T^{13} + 376 p^{6} T^{14} + 7 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 + 10 T + 380 T^{2} + 3079 T^{3} + 71273 T^{4} + 493354 T^{5} + 8654984 T^{6} + 51366911 T^{7} + 741758925 T^{8} + 51366911 p T^{9} + 8654984 p^{2} T^{10} + 493354 p^{3} T^{11} + 71273 p^{4} T^{12} + 3079 p^{5} T^{13} + 380 p^{6} T^{14} + 10 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + 33 T + 891 T^{2} + 16593 T^{3} + 267540 T^{4} + 3546960 T^{5} + 42232098 T^{6} + 436784437 T^{7} + 4134028575 T^{8} + 436784437 p T^{9} + 42232098 p^{2} T^{10} + 3546960 p^{3} T^{11} + 267540 p^{4} T^{12} + 16593 p^{5} T^{13} + 891 p^{6} T^{14} + 33 p^{7} T^{15} + p^{8} T^{16} \)
83 \( 1 + 13 T + 566 T^{2} + 6044 T^{3} + 145132 T^{4} + 1282046 T^{5} + 22184174 T^{6} + 163089004 T^{7} + 2235297087 T^{8} + 163089004 p T^{9} + 22184174 p^{2} T^{10} + 1282046 p^{3} T^{11} + 145132 p^{4} T^{12} + 6044 p^{5} T^{13} + 566 p^{6} T^{14} + 13 p^{7} T^{15} + p^{8} T^{16} \)
89 \( 1 - 22 T + 483 T^{2} - 6152 T^{3} + 66677 T^{4} - 418457 T^{5} + 1196132 T^{6} + 23297564 T^{7} - 288951823 T^{8} + 23297564 p T^{9} + 1196132 p^{2} T^{10} - 418457 p^{3} T^{11} + 66677 p^{4} T^{12} - 6152 p^{5} T^{13} + 483 p^{6} T^{14} - 22 p^{7} T^{15} + p^{8} T^{16} \)
97 \( 1 + 11 T + 555 T^{2} + 4180 T^{3} + 124875 T^{4} + 596251 T^{5} + 16127779 T^{6} + 47076750 T^{7} + 1614911481 T^{8} + 47076750 p T^{9} + 16127779 p^{2} T^{10} + 596251 p^{3} T^{11} + 124875 p^{4} T^{12} + 4180 p^{5} T^{13} + 555 p^{6} T^{14} + 11 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.72935469909954844465906017686, −3.46279417612143003195773554899, −3.39750194153659680168080021874, −3.38938134322790743823689423077, −3.17210789899354497059426356554, −3.11928158919795793937981071835, −3.07897307867997208437588388750, −2.95679218742173203016473706123, −2.87729104964500984998550256708, −2.68167142082102771160215082940, −2.46495984259136681361221161002, −2.44393772393431251360062665533, −2.43813670173509841599752120866, −2.35781902147189453584049878193, −2.33315891407980221618081312271, −2.17445762736279473930722791843, −2.10456334542837513793378179430, −1.72675422829293303923482752340, −1.60299192201221603361601808228, −1.57477545734102028870811201116, −1.55434419022248701766580676549, −1.55374227226669598553487297063, −1.47933780090759696100823868337, −1.32770669344170694071414737484, −1.12277599167935978311161255993, 0, 0, 0, 0, 0, 0, 0, 0, 1.12277599167935978311161255993, 1.32770669344170694071414737484, 1.47933780090759696100823868337, 1.55374227226669598553487297063, 1.55434419022248701766580676549, 1.57477545734102028870811201116, 1.60299192201221603361601808228, 1.72675422829293303923482752340, 2.10456334542837513793378179430, 2.17445762736279473930722791843, 2.33315891407980221618081312271, 2.35781902147189453584049878193, 2.43813670173509841599752120866, 2.44393772393431251360062665533, 2.46495984259136681361221161002, 2.68167142082102771160215082940, 2.87729104964500984998550256708, 2.95679218742173203016473706123, 3.07897307867997208437588388750, 3.11928158919795793937981071835, 3.17210789899354497059426356554, 3.38938134322790743823689423077, 3.39750194153659680168080021874, 3.46279417612143003195773554899, 3.72935469909954844465906017686

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.