Properties

Label 4-8046e2-1.1-c1e2-0-1
Degree $4$
Conductor $64738116$
Sign $1$
Analytic cond. $4127.75$
Root an. cond. $8.01546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 2·7-s − 4·8-s − 6·11-s + 4·13-s − 4·14-s + 5·16-s + 10·17-s − 4·19-s + 12·22-s + 12·23-s + 2·25-s − 8·26-s + 6·28-s + 2·31-s − 6·32-s − 20·34-s + 2·37-s + 8·38-s − 8·41-s + 4·43-s − 18·44-s − 24·46-s + 8·47-s + 49-s − 4·50-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 0.755·7-s − 1.41·8-s − 1.80·11-s + 1.10·13-s − 1.06·14-s + 5/4·16-s + 2.42·17-s − 0.917·19-s + 2.55·22-s + 2.50·23-s + 2/5·25-s − 1.56·26-s + 1.13·28-s + 0.359·31-s − 1.06·32-s − 3.42·34-s + 0.328·37-s + 1.29·38-s − 1.24·41-s + 0.609·43-s − 2.71·44-s − 3.53·46-s + 1.16·47-s + 1/7·49-s − 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64738116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64738116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(64738116\)    =    \(2^{2} \cdot 3^{6} \cdot 149^{2}\)
Sign: $1$
Analytic conductor: \(4127.75\)
Root analytic conductor: \(8.01546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 64738116,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.153835112\)
\(L(\frac12)\) \(\approx\) \(2.153835112\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
149$C_1$ \( ( 1 + T )^{2} \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - 2 T + 3 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 10 T + 56 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 12 T + 79 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 - 2 T + 72 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 8 T + 71 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 4 T + 42 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 8 T + 98 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 16 T + 167 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 10 T + 140 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 2 T + 120 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 2 T + 108 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 4 T - T^{2} + 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 4 T + 138 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 22 T + 276 T^{2} + 22 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 14 T + 188 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 12 T + 211 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 18 T + 272 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.892092198824653189085311876785, −7.86994813606706874583501118610, −7.38092982695257255645828189381, −7.11399693968654131738831987883, −6.95184947752093021030317913608, −6.29345017517326921079363974109, −5.93283341794444826713330790608, −5.48413965927794410733480460863, −5.46362903217079051726161392262, −5.04388472101687217682963669317, −4.42269169166298018891369880646, −4.19131958713097240294888518133, −3.35266260844437622594969916554, −3.20735363672090928232361934746, −2.68227086965637117352917520824, −2.60165568500008787036826595074, −1.62010086539031180816470320116, −1.54372246277588325061309566647, −0.835592154799277896367630077198, −0.58567976993330723604055100019, 0.58567976993330723604055100019, 0.835592154799277896367630077198, 1.54372246277588325061309566647, 1.62010086539031180816470320116, 2.60165568500008787036826595074, 2.68227086965637117352917520824, 3.20735363672090928232361934746, 3.35266260844437622594969916554, 4.19131958713097240294888518133, 4.42269169166298018891369880646, 5.04388472101687217682963669317, 5.46362903217079051726161392262, 5.48413965927794410733480460863, 5.93283341794444826713330790608, 6.29345017517326921079363974109, 6.95184947752093021030317913608, 7.11399693968654131738831987883, 7.38092982695257255645828189381, 7.86994813606706874583501118610, 7.892092198824653189085311876785

Graph of the $Z$-function along the critical line