Properties

Label 2-8041-1.1-c1-0-5
Degree $2$
Conductor $8041$
Sign $1$
Analytic cond. $64.2077$
Root an. cond. $8.01297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.53·2-s + 0.0485·3-s + 0.360·4-s − 0.584·5-s − 0.0746·6-s − 1.23·7-s + 2.51·8-s − 2.99·9-s + 0.897·10-s + 11-s + 0.0175·12-s − 0.643·13-s + 1.89·14-s − 0.0283·15-s − 4.59·16-s − 17-s + 4.60·18-s − 5.42·19-s − 0.210·20-s − 0.0599·21-s − 1.53·22-s − 9.24·23-s + 0.122·24-s − 4.65·25-s + 0.988·26-s − 0.291·27-s − 0.445·28-s + ⋯
L(s)  = 1  − 1.08·2-s + 0.0280·3-s + 0.180·4-s − 0.261·5-s − 0.0304·6-s − 0.466·7-s + 0.890·8-s − 0.999·9-s + 0.283·10-s + 0.301·11-s + 0.00506·12-s − 0.178·13-s + 0.506·14-s − 0.00732·15-s − 1.14·16-s − 0.242·17-s + 1.08·18-s − 1.24·19-s − 0.0471·20-s − 0.0130·21-s − 0.327·22-s − 1.92·23-s + 0.0249·24-s − 0.931·25-s + 0.193·26-s − 0.0560·27-s − 0.0842·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8041 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8041 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8041\)    =    \(11 \cdot 17 \cdot 43\)
Sign: $1$
Analytic conductor: \(64.2077\)
Root analytic conductor: \(8.01297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8041,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.02007976054\)
\(L(\frac12)\) \(\approx\) \(0.02007976054\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - T \)
17 \( 1 + T \)
43 \( 1 + T \)
good2 \( 1 + 1.53T + 2T^{2} \)
3 \( 1 - 0.0485T + 3T^{2} \)
5 \( 1 + 0.584T + 5T^{2} \)
7 \( 1 + 1.23T + 7T^{2} \)
13 \( 1 + 0.643T + 13T^{2} \)
19 \( 1 + 5.42T + 19T^{2} \)
23 \( 1 + 9.24T + 23T^{2} \)
29 \( 1 + 8.11T + 29T^{2} \)
31 \( 1 + 6.20T + 31T^{2} \)
37 \( 1 - 5.04T + 37T^{2} \)
41 \( 1 + 4.44T + 41T^{2} \)
47 \( 1 + 7.15T + 47T^{2} \)
53 \( 1 - 9.14T + 53T^{2} \)
59 \( 1 - 0.525T + 59T^{2} \)
61 \( 1 + 11.6T + 61T^{2} \)
67 \( 1 + 0.835T + 67T^{2} \)
71 \( 1 - 0.263T + 71T^{2} \)
73 \( 1 - 13.9T + 73T^{2} \)
79 \( 1 - 0.175T + 79T^{2} \)
83 \( 1 - 7.40T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 + 1.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.976949122884250663856265036353, −7.44841667231706700954002083593, −6.48372456352895292819361873703, −5.97026222911011922691960047962, −5.08998608522367201272439582850, −4.06526310317043381015105695414, −3.64482807352029559669615615102, −2.33364123519154206057459041091, −1.72935328863177148595637251189, −0.079236661994906028984778591869, 0.079236661994906028984778591869, 1.72935328863177148595637251189, 2.33364123519154206057459041091, 3.64482807352029559669615615102, 4.06526310317043381015105695414, 5.08998608522367201272439582850, 5.97026222911011922691960047962, 6.48372456352895292819361873703, 7.44841667231706700954002083593, 7.976949122884250663856265036353

Graph of the $Z$-function along the critical line