Properties

Label 2-804-268.267-c1-0-7
Degree $2$
Conductor $804$
Sign $-0.310 - 0.950i$
Analytic cond. $6.41997$
Root an. cond. $2.53376$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.34 − 0.442i)2-s − 3-s + (1.60 − 1.18i)4-s + 2.27i·5-s + (−1.34 + 0.442i)6-s − 4.97·7-s + (1.63 − 2.30i)8-s + 9-s + (1.00 + 3.05i)10-s − 2.26·11-s + (−1.60 + 1.18i)12-s + 6.26i·13-s + (−6.68 + 2.19i)14-s − 2.27i·15-s + (1.17 − 3.82i)16-s − 0.801·17-s + ⋯
L(s)  = 1  + (0.949 − 0.312i)2-s − 0.577·3-s + (0.804 − 0.593i)4-s + 1.01i·5-s + (−0.548 + 0.180i)6-s − 1.88·7-s + (0.578 − 0.815i)8-s + 0.333·9-s + (0.317 + 0.964i)10-s − 0.681·11-s + (−0.464 + 0.342i)12-s + 1.73i·13-s + (−1.78 + 0.587i)14-s − 0.586i·15-s + (0.294 − 0.955i)16-s − 0.194·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 804 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.310 - 0.950i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 804 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.310 - 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(804\)    =    \(2^{2} \cdot 3 \cdot 67\)
Sign: $-0.310 - 0.950i$
Analytic conductor: \(6.41997\)
Root analytic conductor: \(2.53376\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{804} (535, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 804,\ (\ :1/2),\ -0.310 - 0.950i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.641026 + 0.884038i\)
\(L(\frac12)\) \(\approx\) \(0.641026 + 0.884038i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.34 + 0.442i)T \)
3 \( 1 + T \)
67 \( 1 + (2.57 - 7.77i)T \)
good5 \( 1 - 2.27iT - 5T^{2} \)
7 \( 1 + 4.97T + 7T^{2} \)
11 \( 1 + 2.26T + 11T^{2} \)
13 \( 1 - 6.26iT - 13T^{2} \)
17 \( 1 + 0.801T + 17T^{2} \)
19 \( 1 - 2.05iT - 19T^{2} \)
23 \( 1 - 7.41iT - 23T^{2} \)
29 \( 1 + 6.30T + 29T^{2} \)
31 \( 1 - 2.55T + 31T^{2} \)
37 \( 1 + 10.5T + 37T^{2} \)
41 \( 1 - 0.0427iT - 41T^{2} \)
43 \( 1 - 0.122T + 43T^{2} \)
47 \( 1 + 4.63iT - 47T^{2} \)
53 \( 1 - 6.54iT - 53T^{2} \)
59 \( 1 + 4.77iT - 59T^{2} \)
61 \( 1 + 10.5iT - 61T^{2} \)
71 \( 1 - 4.26iT - 71T^{2} \)
73 \( 1 - 12.0T + 73T^{2} \)
79 \( 1 - 1.63T + 79T^{2} \)
83 \( 1 - 5.62iT - 83T^{2} \)
89 \( 1 - 11.1T + 89T^{2} \)
97 \( 1 + 14.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.63405165362110205040846048949, −9.914644093530665761745350025944, −9.276609034340949940249262066695, −7.31790319068582852576972186078, −6.79918904931740101535280618050, −6.19659976688907755340744224819, −5.29322838895890345437915954899, −3.88359140159627655290549946572, −3.27440453299787642947007439797, −2.05562233641326792885421349448, 0.39159835404168123447899487524, 2.66802054512449387906177496605, 3.58619488609435977279060081976, 4.82244448134597527563410838478, 5.52705874031497066416610197556, 6.28601641336371651747015522691, 7.12817774139519117846969351256, 8.169532946363812164389808065682, 9.115469304096980608453179000111, 10.29817090735073282354567325811

Graph of the $Z$-function along the critical line