Properties

Degree 2
Conductor $ 2^{2} \cdot 3 \cdot 67 $
Sign $0.444 - 0.895i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.338 + 1.37i)2-s − 3-s + (−1.77 + 0.929i)4-s − 0.0609i·5-s + (−0.338 − 1.37i)6-s + 3.75·7-s + (−1.87 − 2.11i)8-s + 9-s + (0.0837 − 0.0206i)10-s − 1.10·11-s + (1.77 − 0.929i)12-s − 4.93i·13-s + (1.27 + 5.15i)14-s + 0.0609i·15-s + (2.27 − 3.29i)16-s + 6.72·17-s + ⋯
L(s)  = 1  + (0.239 + 0.970i)2-s − 0.577·3-s + (−0.885 + 0.464i)4-s − 0.0272i·5-s + (−0.138 − 0.560i)6-s + 1.42·7-s + (−0.662 − 0.748i)8-s + 0.333·9-s + (0.0264 − 0.00652i)10-s − 0.332·11-s + (0.511 − 0.268i)12-s − 1.37i·13-s + (0.339 + 1.37i)14-s + 0.0157i·15-s + (0.568 − 0.822i)16-s + 1.62·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 804 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 - 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 804 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.444 - 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(804\)    =    \(2^{2} \cdot 3 \cdot 67\)
\( \varepsilon \)  =  $0.444 - 0.895i$
motivic weight  =  \(1\)
character  :  $\chi_{804} (535, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 804,\ (\ :1/2),\ 0.444 - 0.895i)$
$L(1)$  $\approx$  $1.30968 + 0.812194i$
$L(\frac12)$  $\approx$  $1.30968 + 0.812194i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;67\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;67\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.338 - 1.37i)T \)
3 \( 1 + T \)
67 \( 1 + (-6.62 + 4.80i)T \)
good5 \( 1 + 0.0609iT - 5T^{2} \)
7 \( 1 - 3.75T + 7T^{2} \)
11 \( 1 + 1.10T + 11T^{2} \)
13 \( 1 + 4.93iT - 13T^{2} \)
17 \( 1 - 6.72T + 17T^{2} \)
19 \( 1 - 1.13iT - 19T^{2} \)
23 \( 1 - 2.63iT - 23T^{2} \)
29 \( 1 + 1.58T + 29T^{2} \)
31 \( 1 + 0.470T + 31T^{2} \)
37 \( 1 - 4.49T + 37T^{2} \)
41 \( 1 + 1.53iT - 41T^{2} \)
43 \( 1 + 3.78T + 43T^{2} \)
47 \( 1 - 8.21iT - 47T^{2} \)
53 \( 1 + 2.81iT - 53T^{2} \)
59 \( 1 - 8.36iT - 59T^{2} \)
61 \( 1 - 4.04iT - 61T^{2} \)
71 \( 1 - 8.01iT - 71T^{2} \)
73 \( 1 - 11.0T + 73T^{2} \)
79 \( 1 - 4.16T + 79T^{2} \)
83 \( 1 + 0.0220iT - 83T^{2} \)
89 \( 1 + 10.1T + 89T^{2} \)
97 \( 1 - 3.14iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.40032578272133215101909295152, −9.527441488402382476690463345896, −8.180820654306436116994118223566, −7.942023080058296045572246503307, −7.04339884333603420557175626806, −5.61689637923552971892061069006, −5.43298022344705137251161977135, −4.43203172337471502822030688656, −3.15843206047641634830937229998, −1.07268102807469424171602819577, 1.13460047968296666964669883669, 2.21434472006187618476547909531, 3.70565086811328498810618361468, 4.79957497389178507245798295029, 5.22196568282220837069095234406, 6.44911261009237978336895605727, 7.69059214495584374400240913119, 8.534678644589494721954341584731, 9.488520733801500400044820335554, 10.35631340130034045325496390639

Graph of the $Z$-function along the critical line