Properties

Degree $2$
Conductor $8036$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3.24·3-s − 2.56·5-s + 7.49·9-s + 6.20·11-s − 1.41·13-s − 8.31·15-s + 3.93·17-s − 3.82·19-s + 3.06·23-s + 1.58·25-s + 14.5·27-s − 8.48·29-s − 1.13·31-s + 20.1·33-s + 8.49·37-s − 4.58·39-s + 41-s + 5.34·43-s − 19.2·45-s + 6.65·47-s + 12.7·51-s + 6.41·53-s − 15.9·55-s − 12.3·57-s + 3.06·59-s − 7.41·61-s + 3.63·65-s + ⋯
L(s)  = 1  + 1.87·3-s − 1.14·5-s + 2.49·9-s + 1.87·11-s − 0.392·13-s − 2.14·15-s + 0.953·17-s − 0.877·19-s + 0.639·23-s + 0.317·25-s + 2.80·27-s − 1.57·29-s − 0.203·31-s + 3.50·33-s + 1.39·37-s − 0.734·39-s + 0.156·41-s + 0.815·43-s − 2.86·45-s + 0.970·47-s + 1.78·51-s + 0.881·53-s − 2.14·55-s − 1.64·57-s + 0.399·59-s − 0.949·61-s + 0.450·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8036 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8036 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8036\)    =    \(2^{2} \cdot 7^{2} \cdot 41\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{8036} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8036,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.144683219\)
\(L(\frac12)\) \(\approx\) \(4.144683219\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
41 \( 1 - T \)
good3 \( 1 - 3.24T + 3T^{2} \)
5 \( 1 + 2.56T + 5T^{2} \)
11 \( 1 - 6.20T + 11T^{2} \)
13 \( 1 + 1.41T + 13T^{2} \)
17 \( 1 - 3.93T + 17T^{2} \)
19 \( 1 + 3.82T + 19T^{2} \)
23 \( 1 - 3.06T + 23T^{2} \)
29 \( 1 + 8.48T + 29T^{2} \)
31 \( 1 + 1.13T + 31T^{2} \)
37 \( 1 - 8.49T + 37T^{2} \)
43 \( 1 - 5.34T + 43T^{2} \)
47 \( 1 - 6.65T + 47T^{2} \)
53 \( 1 - 6.41T + 53T^{2} \)
59 \( 1 - 3.06T + 59T^{2} \)
61 \( 1 + 7.41T + 61T^{2} \)
67 \( 1 - 1.79T + 67T^{2} \)
71 \( 1 + 3.02T + 71T^{2} \)
73 \( 1 + 0.632T + 73T^{2} \)
79 \( 1 + 14.3T + 79T^{2} \)
83 \( 1 - 8.76T + 83T^{2} \)
89 \( 1 - 7.89T + 89T^{2} \)
97 \( 1 + 9.86T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75670212540811158815374523003, −7.43955845163802284250717395848, −6.82730256613972869648450293449, −5.85814659454259319054955775821, −4.51347622807082402932696548503, −3.98902580672859115147281611352, −3.64791273370711140922520327103, −2.81540700855864372681098927662, −1.90035878920286947355075789376, −0.972711304184212734527438129061, 0.972711304184212734527438129061, 1.90035878920286947355075789376, 2.81540700855864372681098927662, 3.64791273370711140922520327103, 3.98902580672859115147281611352, 4.51347622807082402932696548503, 5.85814659454259319054955775821, 6.82730256613972869648450293449, 7.43955845163802284250717395848, 7.75670212540811158815374523003

Graph of the $Z$-function along the critical line