Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 13 \cdot 103 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 4.21·5-s − 6-s − 4.81·7-s − 8-s + 9-s − 4.21·10-s − 4.29·11-s + 12-s + 13-s + 4.81·14-s + 4.21·15-s + 16-s − 2.64·17-s − 18-s + 0.655·19-s + 4.21·20-s − 4.81·21-s + 4.29·22-s + 1.52·23-s − 24-s + 12.7·25-s − 26-s + 27-s − 4.81·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 1.88·5-s − 0.408·6-s − 1.81·7-s − 0.353·8-s + 0.333·9-s − 1.33·10-s − 1.29·11-s + 0.288·12-s + 0.277·13-s + 1.28·14-s + 1.08·15-s + 0.250·16-s − 0.642·17-s − 0.235·18-s + 0.150·19-s + 0.943·20-s − 1.05·21-s + 0.915·22-s + 0.318·23-s − 0.204·24-s + 2.55·25-s − 0.196·26-s + 0.192·27-s − 0.909·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8034 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(8034\)    =    \(2 \cdot 3 \cdot 13 \cdot 103\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{8034} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(1\)
Selberg data  =  \((2,\ 8034,\ (\ :1/2),\ -1)\)
\(L(1)\)  \(=\)  \(0\)
\(L(\frac12)\)  \(=\)  \(0\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;13,\;103\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;13,\;103\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
13 \( 1 - T \)
103 \( 1 + T \)
good5 \( 1 - 4.21T + 5T^{2} \)
7 \( 1 + 4.81T + 7T^{2} \)
11 \( 1 + 4.29T + 11T^{2} \)
17 \( 1 + 2.64T + 17T^{2} \)
19 \( 1 - 0.655T + 19T^{2} \)
23 \( 1 - 1.52T + 23T^{2} \)
29 \( 1 + 0.992T + 29T^{2} \)
31 \( 1 - 1.93T + 31T^{2} \)
37 \( 1 + 7.13T + 37T^{2} \)
41 \( 1 - 7.02T + 41T^{2} \)
43 \( 1 + 4.82T + 43T^{2} \)
47 \( 1 - 1.34T + 47T^{2} \)
53 \( 1 + 1.36T + 53T^{2} \)
59 \( 1 + 14.8T + 59T^{2} \)
61 \( 1 + 9.04T + 61T^{2} \)
67 \( 1 - 3.79T + 67T^{2} \)
71 \( 1 - 4.83T + 71T^{2} \)
73 \( 1 - 1.21T + 73T^{2} \)
79 \( 1 + 14.6T + 79T^{2} \)
83 \( 1 - 8.38T + 83T^{2} \)
89 \( 1 - 12.2T + 89T^{2} \)
97 \( 1 - 2.87T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.43406535196505813744112861558, −6.73130532545935371133887527406, −6.24630207797053858984667690981, −5.66710244056618138891389590955, −4.85347712208228523720913277070, −3.48737393769320509789737745741, −2.76116854415718385546596756143, −2.38321975200674647942478408972, −1.36332269886466537191373427638, 0, 1.36332269886466537191373427638, 2.38321975200674647942478408972, 2.76116854415718385546596756143, 3.48737393769320509789737745741, 4.85347712208228523720913277070, 5.66710244056618138891389590955, 6.24630207797053858984667690981, 6.73130532545935371133887527406, 7.43406535196505813744112861558

Graph of the $Z$-function along the critical line