Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 13 \cdot 103 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 3.28·5-s + 6-s − 3.26·7-s − 8-s + 9-s − 3.28·10-s + 3.43·11-s − 12-s + 13-s + 3.26·14-s − 3.28·15-s + 16-s − 4.30·17-s − 18-s − 4.26·19-s + 3.28·20-s + 3.26·21-s − 3.43·22-s + 0.898·23-s + 24-s + 5.77·25-s − 26-s − 27-s − 3.26·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.46·5-s + 0.408·6-s − 1.23·7-s − 0.353·8-s + 0.333·9-s − 1.03·10-s + 1.03·11-s − 0.288·12-s + 0.277·13-s + 0.872·14-s − 0.847·15-s + 0.250·16-s − 1.04·17-s − 0.235·18-s − 0.978·19-s + 0.734·20-s + 0.712·21-s − 0.733·22-s + 0.187·23-s + 0.204·24-s + 1.15·25-s − 0.196·26-s − 0.192·27-s − 0.616·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 8034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 8034 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(8034\)    =    \(2 \cdot 3 \cdot 13 \cdot 103\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{8034} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 8034,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;13,\;103\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;13,\;103\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
13 \( 1 - T \)
103 \( 1 - T \)
good5 \( 1 - 3.28T + 5T^{2} \)
7 \( 1 + 3.26T + 7T^{2} \)
11 \( 1 - 3.43T + 11T^{2} \)
17 \( 1 + 4.30T + 17T^{2} \)
19 \( 1 + 4.26T + 19T^{2} \)
23 \( 1 - 0.898T + 23T^{2} \)
29 \( 1 - 1.85T + 29T^{2} \)
31 \( 1 - 0.0760T + 31T^{2} \)
37 \( 1 - 6.10T + 37T^{2} \)
41 \( 1 + 10.4T + 41T^{2} \)
43 \( 1 + 4.03T + 43T^{2} \)
47 \( 1 - 8.58T + 47T^{2} \)
53 \( 1 + 0.879T + 53T^{2} \)
59 \( 1 + 8.39T + 59T^{2} \)
61 \( 1 - 6.04T + 61T^{2} \)
67 \( 1 - 2.20T + 67T^{2} \)
71 \( 1 + 9.35T + 71T^{2} \)
73 \( 1 - 7.76T + 73T^{2} \)
79 \( 1 + 12.7T + 79T^{2} \)
83 \( 1 + 5.25T + 83T^{2} \)
89 \( 1 + 13.0T + 89T^{2} \)
97 \( 1 + 0.220T + 97T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.16109945348469433572727576896, −6.65199529672841081348770502190, −6.22812241260508876691007839195, −5.81879042782935666461936595502, −4.75908600795292261878333231330, −3.87094831256749968418056838684, −2.85440007280551662543352117777, −2.03852573706414966735884581159, −1.22779395800480222303085605842, 0, 1.22779395800480222303085605842, 2.03852573706414966735884581159, 2.85440007280551662543352117777, 3.87094831256749968418056838684, 4.75908600795292261878333231330, 5.81879042782935666461936595502, 6.22812241260508876691007839195, 6.65199529672841081348770502190, 7.16109945348469433572727576896

Graph of the $Z$-function along the critical line