Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 13 \cdot 103 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 3.77·5-s − 6-s + 2.13·7-s + 8-s + 9-s − 3.77·10-s + 4.21·11-s − 12-s − 13-s + 2.13·14-s + 3.77·15-s + 16-s + 4.66·17-s + 18-s + 8.26·19-s − 3.77·20-s − 2.13·21-s + 4.21·22-s + 0.374·23-s − 24-s + 9.28·25-s − 26-s − 27-s + 2.13·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.69·5-s − 0.408·6-s + 0.808·7-s + 0.353·8-s + 0.333·9-s − 1.19·10-s + 1.27·11-s − 0.288·12-s − 0.277·13-s + 0.571·14-s + 0.975·15-s + 0.250·16-s + 1.13·17-s + 0.235·18-s + 1.89·19-s − 0.845·20-s − 0.466·21-s + 0.898·22-s + 0.0780·23-s − 0.204·24-s + 1.85·25-s − 0.196·26-s − 0.192·27-s + 0.404·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8034 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(8034\)    =    \(2 \cdot 3 \cdot 13 \cdot 103\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{8034} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 8034,\ (\ :1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(2.604338119\)
\(L(\frac12)\)  \(\approx\)  \(2.604338119\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;13,\;103\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;13,\;103\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
13 \( 1 + T \)
103 \( 1 + T \)
good5 \( 1 + 3.77T + 5T^{2} \)
7 \( 1 - 2.13T + 7T^{2} \)
11 \( 1 - 4.21T + 11T^{2} \)
17 \( 1 - 4.66T + 17T^{2} \)
19 \( 1 - 8.26T + 19T^{2} \)
23 \( 1 - 0.374T + 23T^{2} \)
29 \( 1 - 10.1T + 29T^{2} \)
31 \( 1 + 3.35T + 31T^{2} \)
37 \( 1 + 5.93T + 37T^{2} \)
41 \( 1 + 10.2T + 41T^{2} \)
43 \( 1 + 7.02T + 43T^{2} \)
47 \( 1 - 5.37T + 47T^{2} \)
53 \( 1 + 3.53T + 53T^{2} \)
59 \( 1 - 5.68T + 59T^{2} \)
61 \( 1 + 5.36T + 61T^{2} \)
67 \( 1 - 8.01T + 67T^{2} \)
71 \( 1 + 8.03T + 71T^{2} \)
73 \( 1 - 12.5T + 73T^{2} \)
79 \( 1 - 13.2T + 79T^{2} \)
83 \( 1 - 4.49T + 83T^{2} \)
89 \( 1 + 11.6T + 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.85145673535321072758950329929, −6.92974912073963712783861672431, −6.70846269603447559793130432314, −5.41124824184289995761854490384, −5.03533171958925008689647776637, −4.33766022410683155609294213047, −3.54533319481127734410869829649, −3.17020038179459397737529317561, −1.55161899175472503763836179296, −0.813625304045214819260809637320, 0.813625304045214819260809637320, 1.55161899175472503763836179296, 3.17020038179459397737529317561, 3.54533319481127734410869829649, 4.33766022410683155609294213047, 5.03533171958925008689647776637, 5.41124824184289995761854490384, 6.70846269603447559793130432314, 6.92974912073963712783861672431, 7.85145673535321072758950329929

Graph of the $Z$-function along the critical line