Properties

Label 4-8016e2-1.1-c1e2-0-0
Degree $4$
Conductor $64256256$
Sign $1$
Analytic cond. $4097.03$
Root an. cond. $8.00050$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·5-s + 3·9-s − 4·11-s − 8·15-s − 8·17-s − 8·19-s + 4·25-s + 4·27-s + 4·29-s − 8·31-s − 8·33-s − 8·37-s − 8·41-s + 8·43-s − 12·45-s + 20·47-s − 6·49-s − 16·51-s − 4·53-s + 16·55-s − 16·57-s + 20·59-s + 8·71-s − 4·73-s + 8·75-s + 12·79-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.78·5-s + 9-s − 1.20·11-s − 2.06·15-s − 1.94·17-s − 1.83·19-s + 4/5·25-s + 0.769·27-s + 0.742·29-s − 1.43·31-s − 1.39·33-s − 1.31·37-s − 1.24·41-s + 1.21·43-s − 1.78·45-s + 2.91·47-s − 6/7·49-s − 2.24·51-s − 0.549·53-s + 2.15·55-s − 2.11·57-s + 2.60·59-s + 0.949·71-s − 0.468·73-s + 0.923·75-s + 1.35·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64256256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64256256 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(64256256\)    =    \(2^{8} \cdot 3^{2} \cdot 167^{2}\)
Sign: $1$
Analytic conductor: \(4097.03\)
Root analytic conductor: \(8.00050\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 64256256,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6753296327\)
\(L(\frac12)\) \(\approx\) \(0.6753296327\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
167$C_1$ \( ( 1 - T )^{2} \)
good5$D_{4}$ \( 1 + 4 T + 12 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 8 T + 48 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 8 T + 46 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$D_{4}$ \( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$D_{4}$ \( 1 + 8 T + 96 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 8 T + 84 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
47$C_4$ \( 1 - 20 T + 186 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 4 T + 92 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 20 T + 210 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 132 T^{2} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 8 T + 86 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 4 T - 50 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 12 T + 176 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 12 T + 170 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 12 T + 102 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.180103428393529296206690289712, −7.74838956013818935383199512692, −7.27436743993728353419285787670, −7.15995143270332002919940674372, −6.70086571582468789286236077853, −6.64618330549798191451695758216, −5.82324893304271180834739113115, −5.64132984961816535481468629611, −4.97549909455134893697845209193, −4.75270594021407661630319812680, −4.17960514483653865191517050638, −4.17667630494894134572701322074, −3.66860569822804063758825855589, −3.51114989696741108455619800940, −2.83180567757970062369705848841, −2.46718406640213291649726689426, −1.98359931598991980555102016161, −1.98034524652463485856812744997, −0.789276526356961023768938275884, −0.22305366778578173736007627395, 0.22305366778578173736007627395, 0.789276526356961023768938275884, 1.98034524652463485856812744997, 1.98359931598991980555102016161, 2.46718406640213291649726689426, 2.83180567757970062369705848841, 3.51114989696741108455619800940, 3.66860569822804063758825855589, 4.17667630494894134572701322074, 4.17960514483653865191517050638, 4.75270594021407661630319812680, 4.97549909455134893697845209193, 5.64132984961816535481468629611, 5.82324893304271180834739113115, 6.64618330549798191451695758216, 6.70086571582468789286236077853, 7.15995143270332002919940674372, 7.27436743993728353419285787670, 7.74838956013818935383199512692, 8.180103428393529296206690289712

Graph of the $Z$-function along the critical line