Properties

Degree 2
Conductor $ 5 \cdot 7 \cdot 229 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s − 4-s − 5-s + 2·6-s − 7-s − 3·8-s + 9-s − 10-s − 11-s − 2·12-s − 5·13-s − 14-s − 2·15-s − 16-s + 2·17-s + 18-s + 4·19-s + 20-s − 2·21-s − 22-s − 4·23-s − 6·24-s + 25-s − 5·26-s − 4·27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s − 1/2·4-s − 0.447·5-s + 0.816·6-s − 0.377·7-s − 1.06·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s − 0.577·12-s − 1.38·13-s − 0.267·14-s − 0.516·15-s − 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.436·21-s − 0.213·22-s − 0.834·23-s − 1.22·24-s + 1/5·25-s − 0.980·26-s − 0.769·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8015 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8015 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(8015\)    =    \(5 \cdot 7 \cdot 229\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{8015} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 8015,\ (\ :1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(2.288692448\)
\(L(\frac12)\)  \(\approx\)  \(2.288692448\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{5,\;7,\;229\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{5,\;7,\;229\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 + T \)
229 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
3 \( 1 - 2 T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - T + p T^{2} \)
43 \( 1 + 3 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 5 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.898719321320502057648374756993, −7.36206953435314449863108224899, −6.37965963794771943990569544215, −5.56814222812180625871203977660, −4.90709785248513481855728210899, −4.17254320988831181485839243018, −3.47246234873361972124392891099, −2.89016808122029173224719965348, −2.24732134604970975343290490964, −0.60632871929251034792484372848, 0.60632871929251034792484372848, 2.24732134604970975343290490964, 2.89016808122029173224719965348, 3.47246234873361972124392891099, 4.17254320988831181485839243018, 4.90709785248513481855728210899, 5.56814222812180625871203977660, 6.37965963794771943990569544215, 7.36206953435314449863108224899, 7.898719321320502057648374756993

Graph of the $Z$-function along the critical line