Properties

Degree 2
Conductor $ 3^{2} \cdot 7 \cdot 127 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 1.96·2-s + 1.87·4-s + 2.35·5-s − 7-s + 0.254·8-s − 4.62·10-s − 2.89·11-s + 6.85·13-s + 1.96·14-s − 4.24·16-s + 2.39·17-s − 4.06·19-s + 4.39·20-s + 5.68·22-s − 2.32·23-s + 0.527·25-s − 13.4·26-s − 1.87·28-s + 3.14·29-s − 6.35·31-s + 7.83·32-s − 4.72·34-s − 2.35·35-s + 5.72·37-s + 7.99·38-s + 0.597·40-s + 5.44·41-s + ⋯
L(s)  = 1  − 1.39·2-s + 0.935·4-s + 1.05·5-s − 0.377·7-s + 0.0898·8-s − 1.46·10-s − 0.871·11-s + 1.90·13-s + 0.525·14-s − 1.06·16-s + 0.582·17-s − 0.932·19-s + 0.983·20-s + 1.21·22-s − 0.485·23-s + 0.105·25-s − 2.64·26-s − 0.353·28-s + 0.583·29-s − 1.14·31-s + 1.38·32-s − 0.809·34-s − 0.397·35-s + 0.941·37-s + 1.29·38-s + 0.0945·40-s + 0.850·41-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(8001\)    =    \(3^{2} \cdot 7 \cdot 127\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{8001} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 8001,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{3,\;7,\;127\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{3,\;7,\;127\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 \( 1 \)
7 \( 1 + T \)
127 \( 1 + T \)
good2 \( 1 + 1.96T + 2T^{2} \)
5 \( 1 - 2.35T + 5T^{2} \)
11 \( 1 + 2.89T + 11T^{2} \)
13 \( 1 - 6.85T + 13T^{2} \)
17 \( 1 - 2.39T + 17T^{2} \)
19 \( 1 + 4.06T + 19T^{2} \)
23 \( 1 + 2.32T + 23T^{2} \)
29 \( 1 - 3.14T + 29T^{2} \)
31 \( 1 + 6.35T + 31T^{2} \)
37 \( 1 - 5.72T + 37T^{2} \)
41 \( 1 - 5.44T + 41T^{2} \)
43 \( 1 + 4.92T + 43T^{2} \)
47 \( 1 + 6.42T + 47T^{2} \)
53 \( 1 + 13.2T + 53T^{2} \)
59 \( 1 + 4.10T + 59T^{2} \)
61 \( 1 - 10.0T + 61T^{2} \)
67 \( 1 + 9.78T + 67T^{2} \)
71 \( 1 + 0.218T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 + 2.97T + 79T^{2} \)
83 \( 1 - 13.0T + 83T^{2} \)
89 \( 1 - 7.20T + 89T^{2} \)
97 \( 1 + 18.5T + 97T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.83770140875391050536942454225, −6.84435649497828692873507901738, −6.15274865737192745807145535678, −5.78593951564133967610507686285, −4.73519875557880269181934708468, −3.77178385649131101905044119166, −2.79415741420300175599743223725, −1.87460744832686493894357998407, −1.23910080025190779486702230002, 0, 1.23910080025190779486702230002, 1.87460744832686493894357998407, 2.79415741420300175599743223725, 3.77178385649131101905044119166, 4.73519875557880269181934708468, 5.78593951564133967610507686285, 6.15274865737192745807145535678, 6.84435649497828692873507901738, 7.83770140875391050536942454225

Graph of the $Z$-function along the critical line