Properties

Label 2-8001-1.1-c1-0-17
Degree $2$
Conductor $8001$
Sign $1$
Analytic cond. $63.8883$
Root an. cond. $7.99301$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.79·2-s + 1.23·4-s − 3.74·5-s − 7-s − 1.36·8-s − 6.74·10-s − 2.34·11-s − 4.15·13-s − 1.79·14-s − 4.94·16-s + 2.99·17-s − 8.02·19-s − 4.64·20-s − 4.22·22-s − 2.42·23-s + 9.03·25-s − 7.47·26-s − 1.23·28-s + 0.671·29-s − 0.209·31-s − 6.15·32-s + 5.38·34-s + 3.74·35-s + 2.33·37-s − 14.4·38-s + 5.12·40-s + 6.97·41-s + ⋯
L(s)  = 1  + 1.27·2-s + 0.619·4-s − 1.67·5-s − 0.377·7-s − 0.483·8-s − 2.13·10-s − 0.708·11-s − 1.15·13-s − 0.481·14-s − 1.23·16-s + 0.726·17-s − 1.84·19-s − 1.03·20-s − 0.901·22-s − 0.505·23-s + 1.80·25-s − 1.46·26-s − 0.234·28-s + 0.124·29-s − 0.0377·31-s − 1.08·32-s + 0.924·34-s + 0.633·35-s + 0.383·37-s − 2.34·38-s + 0.810·40-s + 1.08·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8001\)    =    \(3^{2} \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(63.8883\)
Root analytic conductor: \(7.99301\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8001,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7129887410\)
\(L(\frac12)\) \(\approx\) \(0.7129887410\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
127 \( 1 + T \)
good2 \( 1 - 1.79T + 2T^{2} \)
5 \( 1 + 3.74T + 5T^{2} \)
11 \( 1 + 2.34T + 11T^{2} \)
13 \( 1 + 4.15T + 13T^{2} \)
17 \( 1 - 2.99T + 17T^{2} \)
19 \( 1 + 8.02T + 19T^{2} \)
23 \( 1 + 2.42T + 23T^{2} \)
29 \( 1 - 0.671T + 29T^{2} \)
31 \( 1 + 0.209T + 31T^{2} \)
37 \( 1 - 2.33T + 37T^{2} \)
41 \( 1 - 6.97T + 41T^{2} \)
43 \( 1 + 11.8T + 43T^{2} \)
47 \( 1 - 7.41T + 47T^{2} \)
53 \( 1 + 14.1T + 53T^{2} \)
59 \( 1 + 2.29T + 59T^{2} \)
61 \( 1 - 4.09T + 61T^{2} \)
67 \( 1 + 7.27T + 67T^{2} \)
71 \( 1 - 6.82T + 71T^{2} \)
73 \( 1 + 1.77T + 73T^{2} \)
79 \( 1 + 13.8T + 79T^{2} \)
83 \( 1 - 1.29T + 83T^{2} \)
89 \( 1 - 14.0T + 89T^{2} \)
97 \( 1 + 6.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76705667662775521499760362508, −7.07190950216302780615667930148, −6.36458810940011586096828684499, −5.61153932848151189775886377290, −4.64840124114915911922504163369, −4.47031997642844656910592100517, −3.61327508718001697840367554558, −3.03017056716706309616708736618, −2.22718735209670429663912197028, −0.31779075469054123756280099013, 0.31779075469054123756280099013, 2.22718735209670429663912197028, 3.03017056716706309616708736618, 3.61327508718001697840367554558, 4.47031997642844656910592100517, 4.64840124114915911922504163369, 5.61153932848151189775886377290, 6.36458810940011586096828684499, 7.07190950216302780615667930148, 7.76705667662775521499760362508

Graph of the $Z$-function along the critical line