Properties

Label 2-800-1.1-c5-0-39
Degree $2$
Conductor $800$
Sign $-1$
Analytic cond. $128.307$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 29.2·3-s − 44.5·7-s + 611.·9-s − 349.·11-s − 255.·13-s − 1.50e3·17-s + 2.43e3·19-s + 1.30e3·21-s − 1.43e3·23-s − 1.07e4·27-s + 2.87e3·29-s − 8.94e3·31-s + 1.02e4·33-s + 1.45e4·37-s + 7.45e3·39-s + 7.50e3·41-s − 1.34e4·43-s − 8.44e3·47-s − 1.48e4·49-s + 4.39e4·51-s + 2.83e4·53-s − 7.10e4·57-s − 3.53e3·59-s + 4.56e4·61-s − 2.72e4·63-s + 6.98e4·67-s + 4.19e4·69-s + ⋯
L(s)  = 1  − 1.87·3-s − 0.343·7-s + 2.51·9-s − 0.870·11-s − 0.418·13-s − 1.26·17-s + 1.54·19-s + 0.643·21-s − 0.565·23-s − 2.84·27-s + 0.634·29-s − 1.67·31-s + 1.63·33-s + 1.74·37-s + 0.784·39-s + 0.697·41-s − 1.11·43-s − 0.557·47-s − 0.882·49-s + 2.36·51-s + 1.38·53-s − 2.89·57-s − 0.132·59-s + 1.57·61-s − 0.863·63-s + 1.90·67-s + 1.06·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(128.307\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 800,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 29.2T + 243T^{2} \)
7 \( 1 + 44.5T + 1.68e4T^{2} \)
11 \( 1 + 349.T + 1.61e5T^{2} \)
13 \( 1 + 255.T + 3.71e5T^{2} \)
17 \( 1 + 1.50e3T + 1.41e6T^{2} \)
19 \( 1 - 2.43e3T + 2.47e6T^{2} \)
23 \( 1 + 1.43e3T + 6.43e6T^{2} \)
29 \( 1 - 2.87e3T + 2.05e7T^{2} \)
31 \( 1 + 8.94e3T + 2.86e7T^{2} \)
37 \( 1 - 1.45e4T + 6.93e7T^{2} \)
41 \( 1 - 7.50e3T + 1.15e8T^{2} \)
43 \( 1 + 1.34e4T + 1.47e8T^{2} \)
47 \( 1 + 8.44e3T + 2.29e8T^{2} \)
53 \( 1 - 2.83e4T + 4.18e8T^{2} \)
59 \( 1 + 3.53e3T + 7.14e8T^{2} \)
61 \( 1 - 4.56e4T + 8.44e8T^{2} \)
67 \( 1 - 6.98e4T + 1.35e9T^{2} \)
71 \( 1 - 6.00e4T + 1.80e9T^{2} \)
73 \( 1 - 4.92e4T + 2.07e9T^{2} \)
79 \( 1 + 981.T + 3.07e9T^{2} \)
83 \( 1 - 3.83e4T + 3.93e9T^{2} \)
89 \( 1 - 3.94e4T + 5.58e9T^{2} \)
97 \( 1 + 5.13e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.529371098151010047226987980585, −7.988847244095362099374087373647, −7.08269836362243025870285801998, −6.41459109711242251054155035293, −5.43490699651925401057966508775, −4.95948501807473749855354463649, −3.84114413019452651958806889076, −2.26431243091083236917735169671, −0.857829774367582490011708468667, 0, 0.857829774367582490011708468667, 2.26431243091083236917735169671, 3.84114413019452651958806889076, 4.95948501807473749855354463649, 5.43490699651925401057966508775, 6.41459109711242251054155035293, 7.08269836362243025870285801998, 7.988847244095362099374087373647, 9.529371098151010047226987980585

Graph of the $Z$-function along the critical line