Properties

Label 2-800-1.1-c5-0-58
Degree $2$
Conductor $800$
Sign $-1$
Analytic cond. $128.307$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.32·3-s − 44.2·7-s − 203·9-s − 720.·11-s + 146·13-s + 702·17-s + 2.73e3·19-s + 280·21-s + 4.09e3·23-s + 2.82e3·27-s − 4.01e3·29-s + 4.56e3·31-s + 4.56e3·33-s + 1.47e4·37-s − 923.·39-s − 4.35e3·41-s − 1.24e4·43-s − 6.01e3·47-s − 1.48e4·49-s − 4.43e3·51-s + 1.81e4·53-s − 1.72e4·57-s − 1.97e4·59-s − 4.21e4·61-s + 8.98e3·63-s − 1.61e4·67-s − 2.58e4·69-s + ⋯
L(s)  = 1  − 0.405·3-s − 0.341·7-s − 0.835·9-s − 1.79·11-s + 0.239·13-s + 0.589·17-s + 1.73·19-s + 0.138·21-s + 1.61·23-s + 0.744·27-s − 0.885·29-s + 0.853·31-s + 0.728·33-s + 1.77·37-s − 0.0972·39-s − 0.404·41-s − 1.02·43-s − 0.397·47-s − 0.883·49-s − 0.239·51-s + 0.887·53-s − 0.704·57-s − 0.737·59-s − 1.44·61-s + 0.285·63-s − 0.440·67-s − 0.654·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(128.307\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 800,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 6.32T + 243T^{2} \)
7 \( 1 + 44.2T + 1.68e4T^{2} \)
11 \( 1 + 720.T + 1.61e5T^{2} \)
13 \( 1 - 146T + 3.71e5T^{2} \)
17 \( 1 - 702T + 1.41e6T^{2} \)
19 \( 1 - 2.73e3T + 2.47e6T^{2} \)
23 \( 1 - 4.09e3T + 6.43e6T^{2} \)
29 \( 1 + 4.01e3T + 2.05e7T^{2} \)
31 \( 1 - 4.56e3T + 2.86e7T^{2} \)
37 \( 1 - 1.47e4T + 6.93e7T^{2} \)
41 \( 1 + 4.35e3T + 1.15e8T^{2} \)
43 \( 1 + 1.24e4T + 1.47e8T^{2} \)
47 \( 1 + 6.01e3T + 2.29e8T^{2} \)
53 \( 1 - 1.81e4T + 4.18e8T^{2} \)
59 \( 1 + 1.97e4T + 7.14e8T^{2} \)
61 \( 1 + 4.21e4T + 8.44e8T^{2} \)
67 \( 1 + 1.61e4T + 1.35e9T^{2} \)
71 \( 1 - 4.54e4T + 1.80e9T^{2} \)
73 \( 1 + 2.62e4T + 2.07e9T^{2} \)
79 \( 1 + 8.67e3T + 3.07e9T^{2} \)
83 \( 1 - 9.87e4T + 3.93e9T^{2} \)
89 \( 1 - 3.05e4T + 5.58e9T^{2} \)
97 \( 1 + 6.68e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.187830030117486009430093454560, −8.071933301368472459282873253858, −7.51210731095034096735155880274, −6.34228491897565910654315994642, −5.40249002115889620176753442837, −4.96317997374989920956729138459, −3.24695274332091883204137635008, −2.73877296705693777981593546755, −1.05204969096847072288211108391, 0, 1.05204969096847072288211108391, 2.73877296705693777981593546755, 3.24695274332091883204137635008, 4.96317997374989920956729138459, 5.40249002115889620176753442837, 6.34228491897565910654315994642, 7.51210731095034096735155880274, 8.071933301368472459282873253858, 9.187830030117486009430093454560

Graph of the $Z$-function along the critical line