Properties

Label 8-800e4-1.1-c3e4-0-6
Degree $8$
Conductor $409600000000$
Sign $1$
Analytic cond. $4.96391\times 10^{6}$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·9-s + 104·29-s + 1.36e3·41-s + 1.26e3·49-s − 1.04e3·61-s − 1.44e3·81-s + 2.52e3·89-s + 6.55e3·101-s + 1.36e3·109-s − 1.58e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6.47e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 4/27·9-s + 0.665·29-s + 5.21·41-s + 3.69·49-s − 2.19·61-s − 1.98·81-s + 3.00·89-s + 6.45·101-s + 1.20·109-s − 1.18·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 2.94·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(4.96391\times 10^{6}\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 5^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(6.633588122\)
\(L(\frac12)\) \(\approx\) \(6.633588122\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( ( 1 - 2 T^{2} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 634 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 790 T^{2} + p^{6} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 3238 T^{2} + p^{6} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 3170 T^{2} + p^{6} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 19398 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 26 T + p^{3} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 49390 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 78806 T^{2} + p^{6} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 342 T + p^{3} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 47374 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 133526 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 229110 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 170310 T^{2} + p^{6} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 262 T + p^{3} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 353954 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 392610 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 312910 T^{2} + p^{6} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 945310 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 1120642 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 630 T + p^{3} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 892190 T^{2} + p^{6} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.19590224590867659844842486979, −6.56790798161080948142092437747, −6.50803207029225268712066845463, −6.11552646932547076415093125880, −6.03589780721043224458436720510, −5.95350985926991549707500484809, −5.66602121809587128829935309799, −5.22702807906520805963327621027, −5.19059664545849985676010933386, −4.73244565037062254835258461224, −4.39149373134623777934327201002, −4.30495715744782972816984553624, −4.28815604580371402362190468848, −3.78768803799983053548539296967, −3.54692558895123923305297859825, −3.10299030172198125957693878967, −3.05730898651425979489855334745, −2.50245042212019882946339593310, −2.33389482330051400440407788869, −2.19082098171038456967365281350, −1.78697655525800948989094874240, −1.04470883928351224473879465820, −1.03848011832632045960713317062, −0.71381845431506083813645043350, −0.35838593777487912805694782091, 0.35838593777487912805694782091, 0.71381845431506083813645043350, 1.03848011832632045960713317062, 1.04470883928351224473879465820, 1.78697655525800948989094874240, 2.19082098171038456967365281350, 2.33389482330051400440407788869, 2.50245042212019882946339593310, 3.05730898651425979489855334745, 3.10299030172198125957693878967, 3.54692558895123923305297859825, 3.78768803799983053548539296967, 4.28815604580371402362190468848, 4.30495715744782972816984553624, 4.39149373134623777934327201002, 4.73244565037062254835258461224, 5.19059664545849985676010933386, 5.22702807906520805963327621027, 5.66602121809587128829935309799, 5.95350985926991549707500484809, 6.03589780721043224458436720510, 6.11552646932547076415093125880, 6.50803207029225268712066845463, 6.56790798161080948142092437747, 7.19590224590867659844842486979

Graph of the $Z$-function along the critical line