Properties

Label 8-800e4-1.1-c1e4-0-2
Degree $8$
Conductor $409600000000$
Sign $1$
Analytic cond. $1665.20$
Root an. cond. $2.52745$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 4·9-s − 4·27-s + 8·31-s − 8·37-s − 8·41-s − 28·43-s + 20·49-s − 32·53-s − 36·67-s − 8·71-s − 32·79-s − 10·81-s + 12·83-s − 8·89-s + 32·93-s − 4·107-s − 32·111-s + 36·121-s − 32·123-s + 127-s − 112·129-s + 131-s + 137-s + 139-s + 80·147-s + 149-s + ⋯
L(s)  = 1  + 2.30·3-s + 4/3·9-s − 0.769·27-s + 1.43·31-s − 1.31·37-s − 1.24·41-s − 4.26·43-s + 20/7·49-s − 4.39·53-s − 4.39·67-s − 0.949·71-s − 3.60·79-s − 1.11·81-s + 1.31·83-s − 0.847·89-s + 3.31·93-s − 0.386·107-s − 3.03·111-s + 3.27·121-s − 2.88·123-s + 0.0887·127-s − 9.86·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 6.59·147-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1665.20\)
Root analytic conductor: \(2.52745\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.218964608\)
\(L(\frac12)\) \(\approx\) \(1.218964608\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$D_{4}$ \( ( 1 - 2 T + 4 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 20 T^{2} + 186 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 20 T^{2} + 54 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 36 T^{2} + 1274 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
41$D_{4}$ \( ( 1 + 4 T + 74 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 14 T + 132 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 132 T^{2} + 8474 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 16 T + 158 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 180 T^{2} + 14294 T^{4} - 180 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 140 T^{2} + 11574 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 + 18 T + 212 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 + 4 T + 134 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 236 T^{2} + 23814 T^{4} - 236 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 16 T + 174 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 - 6 T + 172 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 4 T + 134 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 140 T^{2} + 16806 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30400507093415134794035337227, −7.11557771179290550011259327190, −7.10814942907766504385392273905, −6.93117411464043342299825951590, −6.35806061421585888655390720022, −6.24051649265332756439272833205, −5.98749488844225468402154746379, −5.97053639946335435765034744529, −5.40453170544000197434787236152, −5.23137781273671308294036010667, −4.88407789672504954709828188624, −4.65616410189221536010085288205, −4.49762658742986309713201419060, −4.29686576740692511376344309883, −3.63341304767975850645846690948, −3.58497330970638344912059166494, −3.19875189008048115435963113536, −3.18200286231576992832809567057, −2.78690253514986451073744104943, −2.75731264472808744127891687876, −2.34239977120619844696625547455, −1.64427633098665513122087339943, −1.64377486087701292361627624841, −1.44042933670270475032837919096, −0.20530186332446194564206081423, 0.20530186332446194564206081423, 1.44042933670270475032837919096, 1.64377486087701292361627624841, 1.64427633098665513122087339943, 2.34239977120619844696625547455, 2.75731264472808744127891687876, 2.78690253514986451073744104943, 3.18200286231576992832809567057, 3.19875189008048115435963113536, 3.58497330970638344912059166494, 3.63341304767975850645846690948, 4.29686576740692511376344309883, 4.49762658742986309713201419060, 4.65616410189221536010085288205, 4.88407789672504954709828188624, 5.23137781273671308294036010667, 5.40453170544000197434787236152, 5.97053639946335435765034744529, 5.98749488844225468402154746379, 6.24051649265332756439272833205, 6.35806061421585888655390720022, 6.93117411464043342299825951590, 7.10814942907766504385392273905, 7.11557771179290550011259327190, 7.30400507093415134794035337227

Graph of the $Z$-function along the critical line