Properties

Degree $2$
Conductor $80$
Sign $0.995 - 0.0962i$
Motivic weight $5$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−20.3 − 20.3i)3-s + (−46.4 + 31.1i)5-s + (−76.9 + 76.9i)7-s + 588. i·9-s − 556. i·11-s + (141. − 141. i)13-s + (1.58e3 + 312. i)15-s + (−477. − 477. i)17-s + 1.60e3·19-s + 3.13e3·21-s + (−346. − 346. i)23-s + (1.19e3 − 2.88e3i)25-s + (7.03e3 − 7.03e3i)27-s + 7.48e3i·29-s + 7.92e3i·31-s + ⋯
L(s)  = 1  + (−1.30 − 1.30i)3-s + (−0.830 + 0.556i)5-s + (−0.593 + 0.593i)7-s + 2.41i·9-s − 1.38i·11-s + (0.231 − 0.231i)13-s + (1.81 + 0.359i)15-s + (−0.400 − 0.400i)17-s + 1.02·19-s + 1.55·21-s + (−0.136 − 0.136i)23-s + (0.380 − 0.924i)25-s + (1.85 − 1.85i)27-s + 1.65i·29-s + 1.48i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0962i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.995 - 0.0962i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $0.995 - 0.0962i$
Motivic weight: \(5\)
Character: $\chi_{80} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 80,\ (\ :5/2),\ 0.995 - 0.0962i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.624756 + 0.0301367i\)
\(L(\frac12)\) \(\approx\) \(0.624756 + 0.0301367i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (46.4 - 31.1i)T \)
good3 \( 1 + (20.3 + 20.3i)T + 243iT^{2} \)
7 \( 1 + (76.9 - 76.9i)T - 1.68e4iT^{2} \)
11 \( 1 + 556. iT - 1.61e5T^{2} \)
13 \( 1 + (-141. + 141. i)T - 3.71e5iT^{2} \)
17 \( 1 + (477. + 477. i)T + 1.41e6iT^{2} \)
19 \( 1 - 1.60e3T + 2.47e6T^{2} \)
23 \( 1 + (346. + 346. i)T + 6.43e6iT^{2} \)
29 \( 1 - 7.48e3iT - 2.05e7T^{2} \)
31 \( 1 - 7.92e3iT - 2.86e7T^{2} \)
37 \( 1 + (-3.32e3 - 3.32e3i)T + 6.93e7iT^{2} \)
41 \( 1 - 1.87e4T + 1.15e8T^{2} \)
43 \( 1 + (8.25e3 + 8.25e3i)T + 1.47e8iT^{2} \)
47 \( 1 + (5.09e3 - 5.09e3i)T - 2.29e8iT^{2} \)
53 \( 1 + (-1.94e4 + 1.94e4i)T - 4.18e8iT^{2} \)
59 \( 1 - 108.T + 7.14e8T^{2} \)
61 \( 1 - 1.42e4T + 8.44e8T^{2} \)
67 \( 1 + (2.89e4 - 2.89e4i)T - 1.35e9iT^{2} \)
71 \( 1 + 982. iT - 1.80e9T^{2} \)
73 \( 1 + (2.15e4 - 2.15e4i)T - 2.07e9iT^{2} \)
79 \( 1 + 9.38e3T + 3.07e9T^{2} \)
83 \( 1 + (-9.45e3 - 9.45e3i)T + 3.93e9iT^{2} \)
89 \( 1 + 8.48e3iT - 5.58e9T^{2} \)
97 \( 1 + (-1.22e5 - 1.22e5i)T + 8.58e9iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14682834525532435700818185822, −12.19306717119908684124089300623, −11.43330059820197249768296133167, −10.65768416032681064071073987484, −8.576016045703742176293352936383, −7.31538267648103534530880516153, −6.40705795761658421164245592138, −5.36450781280428055935664667386, −3.02370432752621722686478584338, −0.842037222939004802593891563673, 0.47550912474881410405575988855, 3.93839305689369968099854569918, 4.57619936789878206030999364005, 6.01382215089799785389033783945, 7.45397497543783952234153695277, 9.374840716542039892684247572212, 10.04324039792301074842764184057, 11.27493237870619845048665970579, 11.98577871654778519111490408609, 13.09118021668021233209821226627

Graph of the $Z$-function along the critical line