Properties

Degree $2$
Conductor $80$
Sign $0.235 - 0.971i$
Motivic weight $5$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 28.9i·3-s + (−13.1 + 54.3i)5-s + 146. i·7-s − 594.·9-s − 191.·11-s + 83.9i·13-s + (1.57e3 + 380. i)15-s + 2.00e3i·17-s + 677.·19-s + 4.24e3·21-s − 1.29e3i·23-s + (−2.77e3 − 1.42e3i)25-s + 1.01e4i·27-s + 3.26e3·29-s − 6.15e3·31-s + ⋯
L(s)  = 1  − 1.85i·3-s + (−0.235 + 0.971i)5-s + 1.13i·7-s − 2.44·9-s − 0.476·11-s + 0.137i·13-s + (1.80 + 0.436i)15-s + 1.67i·17-s + 0.430·19-s + 2.10·21-s − 0.510i·23-s + (−0.889 − 0.457i)25-s + 2.68i·27-s + 0.721·29-s − 1.15·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.235 - 0.971i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.235 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $0.235 - 0.971i$
Motivic weight: \(5\)
Character: $\chi_{80} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 80,\ (\ :5/2),\ 0.235 - 0.971i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.615601 + 0.484302i\)
\(L(\frac12)\) \(\approx\) \(0.615601 + 0.484302i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (13.1 - 54.3i)T \)
good3 \( 1 + 28.9iT - 243T^{2} \)
7 \( 1 - 146. iT - 1.68e4T^{2} \)
11 \( 1 + 191.T + 1.61e5T^{2} \)
13 \( 1 - 83.9iT - 3.71e5T^{2} \)
17 \( 1 - 2.00e3iT - 1.41e6T^{2} \)
19 \( 1 - 677.T + 2.47e6T^{2} \)
23 \( 1 + 1.29e3iT - 6.43e6T^{2} \)
29 \( 1 - 3.26e3T + 2.05e7T^{2} \)
31 \( 1 + 6.15e3T + 2.86e7T^{2} \)
37 \( 1 - 1.13e4iT - 6.93e7T^{2} \)
41 \( 1 + 1.05e4T + 1.15e8T^{2} \)
43 \( 1 + 1.29e4iT - 1.47e8T^{2} \)
47 \( 1 - 9.52e3iT - 2.29e8T^{2} \)
53 \( 1 - 1.47e4iT - 4.18e8T^{2} \)
59 \( 1 + 3.82e4T + 7.14e8T^{2} \)
61 \( 1 + 3.58e3T + 8.44e8T^{2} \)
67 \( 1 - 2.17e4iT - 1.35e9T^{2} \)
71 \( 1 + 5.13e4T + 1.80e9T^{2} \)
73 \( 1 + 1.33e4iT - 2.07e9T^{2} \)
79 \( 1 - 1.59e4T + 3.07e9T^{2} \)
83 \( 1 - 5.33e4iT - 3.93e9T^{2} \)
89 \( 1 - 5.13e4T + 5.58e9T^{2} \)
97 \( 1 + 8.08e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50621516504455444530534697512, −12.47412388127935703308965918199, −11.82073877542376439838245345382, −10.62631365672036473990514226538, −8.666711888740953578949656065249, −7.78311528427012704753213396821, −6.62705013023370737733752492544, −5.78743748465514542757407082679, −2.95768738128760157675755817947, −1.81151780013200816661634208893, 0.32147471482301591902389277579, 3.39038826658155224344875657145, 4.55491566531707498269448921742, 5.34370140244901694473813929834, 7.61427895334027185491788608330, 9.008720720064886483975209784788, 9.795208307308192856169786256322, 10.79322143357093212535059828276, 11.77641425345443417251652814258, 13.40973370879862488971101208876

Graph of the $Z$-function along the critical line