# Properties

 Degree $2$ Conductor $80$ Sign $-0.0894 - 0.995i$ Motivic weight $5$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + 11.1i·3-s + (−5 − 55.6i)5-s + 122. i·7-s + 119.·9-s + 100·11-s + 734. i·13-s + (619. − 55.6i)15-s + 979. i·17-s − 2.24e3·19-s − 1.36e3·21-s + 3.41e3i·23-s + (−3.07e3 + 556. i)25-s + 4.03e3i·27-s + 7.85e3·29-s + 2.14e3·31-s + ⋯
 L(s)  = 1 + 0.714i·3-s + (−0.0894 − 0.995i)5-s + 0.944i·7-s + 0.489·9-s + 0.249·11-s + 1.20i·13-s + (0.711 − 0.0638i)15-s + 0.822i·17-s − 1.42·19-s − 0.674·21-s + 1.34i·23-s + (−0.983 + 0.178i)25-s + 1.06i·27-s + 1.73·29-s + 0.400·31-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0894 - 0.995i)\, \overline{\Lambda}(6-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.0894 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$80$$    =    $$2^{4} \cdot 5$$ Sign: $-0.0894 - 0.995i$ Motivic weight: $$5$$ Character: $\chi_{80} (49, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 80,\ (\ :5/2),\ -0.0894 - 0.995i)$$

## Particular Values

 $$L(3)$$ $$\approx$$ $$1.04981 + 1.14831i$$ $$L(\frac12)$$ $$\approx$$ $$1.04981 + 1.14831i$$ $$L(\frac{7}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
5 $$1 + (5 + 55.6i)T$$
good3 $$1 - 11.1iT - 243T^{2}$$
7 $$1 - 122. iT - 1.68e4T^{2}$$
11 $$1 - 100T + 1.61e5T^{2}$$
13 $$1 - 734. iT - 3.71e5T^{2}$$
17 $$1 - 979. iT - 1.41e6T^{2}$$
19 $$1 + 2.24e3T + 2.47e6T^{2}$$
23 $$1 - 3.41e3iT - 6.43e6T^{2}$$
29 $$1 - 7.85e3T + 2.05e7T^{2}$$
31 $$1 - 2.14e3T + 2.86e7T^{2}$$
37 $$1 - 1.04e4iT - 6.93e7T^{2}$$
41 $$1 + 7.41e3T + 1.15e8T^{2}$$
43 $$1 + 1.77e4iT - 1.47e8T^{2}$$
47 $$1 - 9.43e3iT - 2.29e8T^{2}$$
53 $$1 + 2.42e4iT - 4.18e8T^{2}$$
59 $$1 - 2.59e4T + 7.14e8T^{2}$$
61 $$1 + 3.05e3T + 8.44e8T^{2}$$
67 $$1 + 5.87e4iT - 1.35e9T^{2}$$
71 $$1 + 3.76e4T + 1.80e9T^{2}$$
73 $$1 - 2.40e4iT - 2.07e9T^{2}$$
79 $$1 - 7.97e4T + 3.07e9T^{2}$$
83 $$1 + 1.62e4iT - 3.93e9T^{2}$$
89 $$1 - 826T + 5.58e9T^{2}$$
97 $$1 + 3.75e4iT - 8.58e9T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−13.62888779952220793689390911915, −12.48283116262100413163406666226, −11.67732911436828023101511948405, −10.19885790561017840910421408117, −9.147608401713432822319951208613, −8.382312227586507336980839758473, −6.48502939643407503281125359191, −5.00456884204260901220619534484, −3.98667771558539725890329782130, −1.73053176006205792695569421319, 0.68813881368105323600995243329, 2.62845665786447815590234151888, 4.29361000859107645984793854807, 6.38362657928761887447733844094, 7.15838292881921442677677980966, 8.222570792745344658924580992775, 10.15419753532308403398065738189, 10.72526183325230366865490785603, 12.17112731807140692815043157745, 13.17069205449436454384558757914