Properties

Degree 4
Conductor $ 2^{8} \cdot 5^{2} $
Sign $1$
Motivic weight 5
Primitive no
Self-dual yes
Analytic rank 0

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 10·5-s + 362·9-s + 200·11-s − 4.48e3·19-s − 3.02e3·25-s + 1.57e4·29-s + 4.28e3·31-s − 1.48e4·41-s − 3.62e3·45-s + 1.86e4·49-s − 2.00e3·55-s + 5.19e4·59-s − 6.11e3·61-s − 7.52e4·71-s + 1.59e5·79-s + 7.19e4·81-s + 1.65e3·89-s + 4.48e4·95-s + 7.24e4·99-s − 2.87e5·101-s + 2.12e5·109-s − 2.92e5·121-s + 6.15e4·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 0.178·5-s + 1.48·9-s + 0.498·11-s − 2.85·19-s − 0.967·25-s + 3.46·29-s + 0.801·31-s − 1.37·41-s − 0.266·45-s + 1.10·49-s − 0.0891·55-s + 1.94·59-s − 0.210·61-s − 1.77·71-s + 2.87·79-s + 1.21·81-s + 0.0221·89-s + 0.510·95-s + 0.742·99-s − 2.80·101-s + 1.71·109-s − 1.81·121-s + 0.352·125-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(6400\)    =    \(2^{8} \cdot 5^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(5\)
character  :  induced by $\chi_{80} (1, \cdot )$
primitive  :  no
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((4,\ 6400,\ (\ :5/2, 5/2),\ 1)\)
\(L(3)\)  \(\approx\)  \(2.42072\)
\(L(\frac12)\)  \(\approx\)  \(2.42072\)
\(L(\frac{7}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;5\}$,\(F_p(T)\) is a polynomial of degree 4. If $p \in \{2,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 3.
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + 2 p T + p^{5} T^{2} \)
good3$C_2^2$ \( 1 - 362 T^{2} + p^{10} T^{4} \)
7$C_2^2$ \( 1 - 18610 T^{2} + p^{10} T^{4} \)
11$C_2$ \( ( 1 - 100 T + p^{5} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 202442 T^{2} + p^{10} T^{4} \)
17$C_2^2$ \( 1 - 1879458 T^{2} + p^{10} T^{4} \)
19$C_2$ \( ( 1 + 2244 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 1185810 T^{2} + p^{10} T^{4} \)
29$C_2$ \( ( 1 - 7854 T + p^{5} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2144 T + p^{5} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 30515770 T^{2} + p^{10} T^{4} \)
41$C_2$ \( ( 1 + 7414 T + p^{5} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 21442214 T^{2} + p^{10} T^{4} \)
47$C_2^2$ \( 1 - 369731298 T^{2} + p^{10} T^{4} \)
53$C_2^2$ \( 1 - 248174170 T^{2} + p^{10} T^{4} \)
59$C_2$ \( ( 1 - 25972 T + p^{5} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 3058 T + p^{5} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 755362070 T^{2} + p^{10} T^{4} \)
71$C_2$ \( ( 1 + 37608 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 3569749522 T^{2} + p^{10} T^{4} \)
79$C_2$ \( ( 1 - 79728 T + p^{5} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 7612675530 T^{2} + p^{10} T^{4} \)
89$C_2$ \( ( 1 - 826 T + p^{5} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 15761405890 T^{2} + p^{10} T^{4} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.62888779952220793689390911915, −13.17069205449436454384558757914, −12.48283116262100413163406666226, −12.17112731807140692815043157745, −11.67732911436828023101511948405, −10.72526183325230366865490785603, −10.19885790561017840910421408117, −10.15419753532308403398065738189, −9.147608401713432822319951208613, −8.382312227586507336980839758473, −8.222570792745344658924580992775, −7.15838292881921442677677980966, −6.48502939643407503281125359191, −6.38362657928761887447733844094, −5.00456884204260901220619534484, −4.29361000859107645984793854807, −3.98667771558539725890329782130, −2.62845665786447815590234151888, −1.73053176006205792695569421319, −0.68813881368105323600995243329, 0.68813881368105323600995243329, 1.73053176006205792695569421319, 2.62845665786447815590234151888, 3.98667771558539725890329782130, 4.29361000859107645984793854807, 5.00456884204260901220619534484, 6.38362657928761887447733844094, 6.48502939643407503281125359191, 7.15838292881921442677677980966, 8.222570792745344658924580992775, 8.382312227586507336980839758473, 9.147608401713432822319951208613, 10.15419753532308403398065738189, 10.19885790561017840910421408117, 10.72526183325230366865490785603, 11.67732911436828023101511948405, 12.17112731807140692815043157745, 12.48283116262100413163406666226, 13.17069205449436454384558757914, 13.62888779952220793689390911915

Graph of the $Z$-function along the critical line