Properties

Degree 2
Conductor $ 2^{4} \cdot 5 $
Sign $-0.804 - 0.593i$
Motivic weight 5
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 19.8i·3-s + (−45 − 33.1i)5-s − 59.6i·7-s − 153·9-s − 252·11-s + 119. i·13-s + (−660 + 895. i)15-s + 689. i·17-s + 220·19-s − 1.18e3·21-s + 2.43e3i·23-s + (924. + 2.98e3i)25-s − 1.79e3i·27-s − 6.93e3·29-s − 6.75e3·31-s + ⋯
L(s)  = 1  − 1.27i·3-s + (−0.804 − 0.593i)5-s − 0.460i·7-s − 0.629·9-s − 0.627·11-s + 0.195i·13-s + (−0.757 + 1.02i)15-s + 0.578i·17-s + 0.139·19-s − 0.587·21-s + 0.959i·23-s + (0.295 + 0.955i)25-s − 0.472i·27-s − 1.53·29-s − 1.26·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.804 - 0.593i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.804 - 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(80\)    =    \(2^{4} \cdot 5\)
\( \varepsilon \)  =  $-0.804 - 0.593i$
motivic weight  =  \(5\)
character  :  $\chi_{80} (49, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 80,\ (\ :5/2),\ -0.804 - 0.593i)\)
\(L(3)\)  \(\approx\)  \(0.183205 + 0.557366i\)
\(L(\frac12)\)  \(\approx\)  \(0.183205 + 0.557366i\)
\(L(\frac{7}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;5\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (45 + 33.1i)T \)
good3 \( 1 + 19.8iT - 243T^{2} \)
7 \( 1 + 59.6iT - 1.68e4T^{2} \)
11 \( 1 + 252T + 1.61e5T^{2} \)
13 \( 1 - 119. iT - 3.71e5T^{2} \)
17 \( 1 - 689. iT - 1.41e6T^{2} \)
19 \( 1 - 220T + 2.47e6T^{2} \)
23 \( 1 - 2.43e3iT - 6.43e6T^{2} \)
29 \( 1 + 6.93e3T + 2.05e7T^{2} \)
31 \( 1 + 6.75e3T + 2.86e7T^{2} \)
37 \( 1 + 1.39e4iT - 6.93e7T^{2} \)
41 \( 1 + 198T + 1.15e8T^{2} \)
43 \( 1 + 417. iT - 1.47e8T^{2} \)
47 \( 1 + 1.05e4iT - 2.29e8T^{2} \)
53 \( 1 - 5.82e3iT - 4.18e8T^{2} \)
59 \( 1 - 2.46e4T + 7.14e8T^{2} \)
61 \( 1 + 5.69e3T + 8.44e8T^{2} \)
67 \( 1 + 4.36e4iT - 1.35e9T^{2} \)
71 \( 1 + 5.33e4T + 1.80e9T^{2} \)
73 \( 1 + 7.09e4iT - 2.07e9T^{2} \)
79 \( 1 + 5.19e4T + 3.07e9T^{2} \)
83 \( 1 + 6.18e4iT - 3.93e9T^{2} \)
89 \( 1 + 9.99e3T + 5.58e9T^{2} \)
97 \( 1 - 1.01e5iT - 8.58e9T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.85937452426659599286633648871, −11.90777150247344623859242650377, −10.81171708991485132610084415289, −9.095376398425732577586925992651, −7.75938724834058794437686308689, −7.25338803591288837699092310252, −5.58315848127763899319032472826, −3.83913336687543553481393853115, −1.72972365910079842681397333888, −0.24545829951886585968100040249, 2.90215463686548024180531290082, 4.16887342677639859435482830729, 5.43403235251834930132038685870, 7.20400959014858528732836540970, 8.540671969408024928511524549821, 9.770690845478940023450445049360, 10.73355844752777835638069157217, 11.58005729088650790866170375174, 12.90983674890392720471875134896, 14.49752594411039763082254060543

Graph of the $Z$-function along the critical line