Properties

Label 4-80e2-1.1-c2e2-0-1
Degree $4$
Conductor $6400$
Sign $1$
Analytic cond. $4.75171$
Root an. cond. $1.47642$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 4·7-s + 8·9-s + 16·11-s + 6·13-s + 14·17-s − 16·21-s + 4·23-s − 25·25-s + 36·27-s − 104·31-s + 64·33-s − 6·37-s + 24·39-s − 16·41-s + 84·43-s + 36·47-s + 8·49-s + 56·51-s + 106·53-s − 96·61-s − 32·63-s − 124·67-s + 16·69-s + 56·71-s − 94·73-s − 100·75-s + ⋯
L(s)  = 1  + 4/3·3-s − 4/7·7-s + 8/9·9-s + 1.45·11-s + 6/13·13-s + 0.823·17-s − 0.761·21-s + 4/23·23-s − 25-s + 4/3·27-s − 3.35·31-s + 1.93·33-s − 0.162·37-s + 8/13·39-s − 0.390·41-s + 1.95·43-s + 0.765·47-s + 8/49·49-s + 1.09·51-s + 2·53-s − 1.57·61-s − 0.507·63-s − 1.85·67-s + 0.231·69-s + 0.788·71-s − 1.28·73-s − 4/3·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6400\)    =    \(2^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(4.75171\)
Root analytic conductor: \(1.47642\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6400,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.281966687\)
\(L(\frac12)\) \(\approx\) \(2.281966687\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + p^{2} T^{2} \)
good3$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} \)
7$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )( 1 + 16 T + p^{2} T^{2} ) \)
19$C_2^2$ \( 1 - 322 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )( 1 + 42 T + p^{2} T^{2} ) \)
31$C_2$ \( ( 1 + 52 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 84 T + 3528 T^{2} - 84 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 36 T + 648 T^{2} - 36 p^{2} T^{3} + p^{4} T^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 - p T )^{2}( 1 + p^{2} T^{2} ) \)
59$C_2^2$ \( 1 - 6562 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 48 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 124 T + 7688 T^{2} + 124 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 - 28 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 94 T + 4418 T^{2} + 94 p^{2} T^{3} + p^{4} T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
83$C_2^2$ \( 1 + 36 T + 648 T^{2} + 36 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 9442 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 + 126 T + 7938 T^{2} + 126 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.49993930591100624662516488587, −13.86044914999809610449259555471, −13.55539247026847928857388913450, −12.88772438575604322004032726204, −12.21262680069244875304099998371, −12.00391884968522702685756130805, −10.94941113218402555256988984869, −10.60743643636833107945835355572, −9.688183020099762016018134082624, −9.188745117235612226752961263905, −8.983568593412179507645337916561, −8.295764060792530018351770838178, −7.34712988900325271059569299119, −7.17546497060046303972154404160, −6.10199289521861824782559450555, −5.53305507942382811346062691126, −4.06184677211170776568625861228, −3.74710321636200446913837047237, −2.82748992707805876928492998427, −1.55983736865652693073481966028, 1.55983736865652693073481966028, 2.82748992707805876928492998427, 3.74710321636200446913837047237, 4.06184677211170776568625861228, 5.53305507942382811346062691126, 6.10199289521861824782559450555, 7.17546497060046303972154404160, 7.34712988900325271059569299119, 8.295764060792530018351770838178, 8.983568593412179507645337916561, 9.188745117235612226752961263905, 9.688183020099762016018134082624, 10.60743643636833107945835355572, 10.94941113218402555256988984869, 12.00391884968522702685756130805, 12.21262680069244875304099998371, 12.88772438575604322004032726204, 13.55539247026847928857388913450, 13.86044914999809610449259555471, 14.49993930591100624662516488587

Graph of the $Z$-function along the critical line