Properties

Label 4-80e2-1.1-c1e2-0-1
Degree $4$
Conductor $6400$
Sign $1$
Analytic cond. $0.408069$
Root an. cond. $0.799251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·9-s + 8·11-s − 8·19-s − 25-s − 4·29-s + 4·41-s − 4·45-s + 10·49-s − 16·55-s − 24·59-s − 20·61-s − 16·71-s + 32·79-s − 5·81-s − 12·89-s + 16·95-s + 16·99-s + 12·101-s + 12·109-s + 26·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 8·145-s + ⋯
L(s)  = 1  − 0.894·5-s + 2/3·9-s + 2.41·11-s − 1.83·19-s − 1/5·25-s − 0.742·29-s + 0.624·41-s − 0.596·45-s + 10/7·49-s − 2.15·55-s − 3.12·59-s − 2.56·61-s − 1.89·71-s + 3.60·79-s − 5/9·81-s − 1.27·89-s + 1.64·95-s + 1.60·99-s + 1.19·101-s + 1.14·109-s + 2.36·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.664·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6400\)    =    \(2^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.408069\)
Root analytic conductor: \(0.799251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8612374875\)
\(L(\frac12)\) \(\approx\) \(0.8612374875\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 162 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.87516829368151963944878567818, −14.03027895351106023041294264280, −13.80403053219716984980398795584, −12.91997052424831310620284565891, −12.27661252309399260434141940896, −12.15060959609603369715962295845, −11.46522605854082072550973007185, −10.86241726330800794944868649596, −10.44721562698896132870423004877, −9.352390215483697261062375577735, −9.210189714894171573445856454892, −8.531576274232393632586704936129, −7.67898330238913181870458570066, −7.21583158999792306410434978903, −6.36127294369327897367988140029, −6.06383267017174124142765982170, −4.44387010686589718708577246840, −4.26729765342000317017177688222, −3.43992358269873926659198241096, −1.71634013614640719267961657709, 1.71634013614640719267961657709, 3.43992358269873926659198241096, 4.26729765342000317017177688222, 4.44387010686589718708577246840, 6.06383267017174124142765982170, 6.36127294369327897367988140029, 7.21583158999792306410434978903, 7.67898330238913181870458570066, 8.531576274232393632586704936129, 9.210189714894171573445856454892, 9.352390215483697261062375577735, 10.44721562698896132870423004877, 10.86241726330800794944868649596, 11.46522605854082072550973007185, 12.15060959609603369715962295845, 12.27661252309399260434141940896, 12.91997052424831310620284565891, 13.80403053219716984980398795584, 14.03027895351106023041294264280, 14.87516829368151963944878567818

Graph of the $Z$-function along the critical line