Properties

Label 2-80-1.1-c13-0-21
Degree $2$
Conductor $80$
Sign $-1$
Analytic cond. $85.7847$
Root an. cond. $9.26200$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.12e3·3-s + 1.56e4·5-s − 3.24e5·7-s − 3.26e5·9-s + 1.64e6·11-s + 6.26e6·13-s + 1.75e7·15-s + 1.66e8·17-s − 3.12e8·19-s − 3.65e8·21-s + 6.32e8·23-s + 2.44e8·25-s − 2.16e9·27-s − 2.82e9·29-s − 7.61e9·31-s + 1.85e9·33-s − 5.07e9·35-s + 1.99e10·37-s + 7.05e9·39-s − 4.69e10·41-s + 7.85e9·43-s − 5.10e9·45-s − 8.31e10·47-s + 8.39e9·49-s + 1.87e11·51-s − 1.19e11·53-s + 2.57e10·55-s + ⋯
L(s)  = 1  + 0.891·3-s + 0.447·5-s − 1.04·7-s − 0.205·9-s + 0.280·11-s + 0.360·13-s + 0.398·15-s + 1.67·17-s − 1.52·19-s − 0.929·21-s + 0.890·23-s + 0.199·25-s − 1.07·27-s − 0.882·29-s − 1.54·31-s + 0.249·33-s − 0.466·35-s + 1.27·37-s + 0.321·39-s − 1.54·41-s + 0.189·43-s − 0.0916·45-s − 1.12·47-s + 0.0866·49-s + 1.49·51-s − 0.739·53-s + 0.125·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(85.7847\)
Root analytic conductor: \(9.26200\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80,\ (\ :13/2),\ -1)\)

Particular Values

\(L(7)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 1.56e4T \)
good3 \( 1 - 1.12e3T + 1.59e6T^{2} \)
7 \( 1 + 3.24e5T + 9.68e10T^{2} \)
11 \( 1 - 1.64e6T + 3.45e13T^{2} \)
13 \( 1 - 6.26e6T + 3.02e14T^{2} \)
17 \( 1 - 1.66e8T + 9.90e15T^{2} \)
19 \( 1 + 3.12e8T + 4.20e16T^{2} \)
23 \( 1 - 6.32e8T + 5.04e17T^{2} \)
29 \( 1 + 2.82e9T + 1.02e19T^{2} \)
31 \( 1 + 7.61e9T + 2.44e19T^{2} \)
37 \( 1 - 1.99e10T + 2.43e20T^{2} \)
41 \( 1 + 4.69e10T + 9.25e20T^{2} \)
43 \( 1 - 7.85e9T + 1.71e21T^{2} \)
47 \( 1 + 8.31e10T + 5.46e21T^{2} \)
53 \( 1 + 1.19e11T + 2.60e22T^{2} \)
59 \( 1 + 4.20e11T + 1.04e23T^{2} \)
61 \( 1 - 4.15e11T + 1.61e23T^{2} \)
67 \( 1 - 1.02e11T + 5.48e23T^{2} \)
71 \( 1 - 4.00e11T + 1.16e24T^{2} \)
73 \( 1 - 5.55e11T + 1.67e24T^{2} \)
79 \( 1 + 1.60e12T + 4.66e24T^{2} \)
83 \( 1 - 2.64e11T + 8.87e24T^{2} \)
89 \( 1 + 3.69e12T + 2.19e25T^{2} \)
97 \( 1 + 1.00e13T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.09766326486535470085612114012, −9.820858258352169516417944735430, −9.089045204781870310743987576336, −7.996473788924319002631776168333, −6.63051268245743834167687415439, −5.55290673607762340189600260628, −3.72469432397198523262958644742, −2.91898109674791511098151481432, −1.61753497332193712697640038787, 0, 1.61753497332193712697640038787, 2.91898109674791511098151481432, 3.72469432397198523262958644742, 5.55290673607762340189600260628, 6.63051268245743834167687415439, 7.996473788924319002631776168333, 9.089045204781870310743987576336, 9.820858258352169516417944735430, 11.09766326486535470085612114012

Graph of the $Z$-function along the critical line