Properties

Label 4-2e6-1.1-c13e2-0-1
Degree $4$
Conductor $64$
Sign $1$
Analytic cond. $73.5902$
Root an. cond. $2.92890$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 112·2-s + 4.35e3·4-s − 3.51e5·7-s + 4.30e5·8-s − 2.06e6·9-s + 3.93e7·14-s − 8.38e7·16-s − 2.67e8·17-s + 2.31e8·18-s − 7.11e7·23-s + 1.93e9·25-s − 1.53e9·28-s − 1.15e10·31-s + 5.86e9·32-s + 2.99e10·34-s − 9.00e9·36-s − 4.70e10·41-s + 7.97e9·46-s − 1.36e11·47-s − 1.01e11·49-s − 2.16e11·50-s − 1.51e11·56-s + 1.29e12·62-s + 7.27e11·63-s + 2.98e10·64-s − 1.16e12·68-s − 2.61e12·71-s + ⋯
L(s)  = 1  − 1.23·2-s + 0.531·4-s − 1.12·7-s + 0.580·8-s − 1.29·9-s + 1.39·14-s − 1.24·16-s − 2.68·17-s + 1.60·18-s − 0.100·23-s + 1.58·25-s − 0.600·28-s − 2.33·31-s + 0.965·32-s + 3.32·34-s − 0.689·36-s − 1.54·41-s + 0.124·46-s − 1.84·47-s − 1.04·49-s − 1.95·50-s − 0.655·56-s + 2.88·62-s + 1.46·63-s + 0.0542·64-s − 1.42·68-s − 2.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+13/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(64\)    =    \(2^{6}\)
Sign: $1$
Analytic conductor: \(73.5902\)
Root analytic conductor: \(2.92890\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 64,\ (\ :13/2, 13/2),\ 1)\)

Particular Values

\(L(7)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + 7 p^{4} T + p^{13} T^{2} \)
good3$C_2^2$ \( 1 + 229990 p^{2} T^{2} + p^{26} T^{4} \)
5$C_2^2$ \( 1 - 77269194 p^{2} T^{2} + p^{26} T^{4} \)
7$C_2$ \( ( 1 + 175832 T + p^{13} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 62100824999962 T^{2} + p^{26} T^{4} \)
13$C_2^2$ \( 1 + 360392330876150 T^{2} + p^{26} T^{4} \)
17$C_2$ \( ( 1 + 133520302 T + p^{13} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 82896428399326282 T^{2} + p^{26} T^{4} \)
23$C_2$ \( ( 1 + 1547192 p T + p^{13} T^{2} )^{2} \)
29$C_2^2$ \( 1 - 18002148940349036842 T^{2} + p^{26} T^{4} \)
31$C_2$ \( ( 1 + 5765001568 T + p^{13} T^{2} )^{2} \)
37$C_2^2$ \( 1 - \)\(31\!\cdots\!70\)\( T^{2} + p^{26} T^{4} \)
41$C_2$ \( ( 1 + 23546348918 T + p^{13} T^{2} )^{2} \)
43$C_2^2$ \( 1 - \)\(32\!\cdots\!30\)\( T^{2} + p^{26} T^{4} \)
47$C_2$ \( ( 1 + 68107736592 T + p^{13} T^{2} )^{2} \)
53$C_2^2$ \( 1 - \)\(24\!\cdots\!30\)\( T^{2} + p^{26} T^{4} \)
59$C_2^2$ \( 1 - \)\(19\!\cdots\!22\)\( T^{2} + p^{26} T^{4} \)
61$C_2^2$ \( 1 - \)\(14\!\cdots\!62\)\( T^{2} + p^{26} T^{4} \)
67$C_2^2$ \( 1 - \)\(95\!\cdots\!30\)\( T^{2} + p^{26} T^{4} \)
71$C_2$ \( ( 1 + 1309471657368 T + p^{13} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 478647871914 T + p^{13} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 364547231600 T + p^{13} T^{2} )^{2} \)
83$C_2^2$ \( 1 - \)\(16\!\cdots\!70\)\( T^{2} + p^{26} T^{4} \)
89$C_2$ \( ( 1 + 102457641350 T + p^{13} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 6157717373342 T + p^{13} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.96913617909271316794322981383, −17.65978435455203681643641082054, −16.53113069873533837985788904387, −16.43926881792246532000931553469, −15.33668974110885581988608251445, −14.42478382858237728831045644709, −13.32932010916070356905866113244, −12.87621409939849304338204397150, −11.33823241226993906262910766164, −10.93507854705696446556708009729, −9.825415577534778085788850462259, −8.846768203395262984579593176778, −8.645963212763147773751643674215, −7.09964062377997907717772034749, −6.35634786931397683112681367751, −4.81004787998134418614049204748, −3.19818504863189000629106719430, −1.93038818587889765107238007347, 0, 0, 1.93038818587889765107238007347, 3.19818504863189000629106719430, 4.81004787998134418614049204748, 6.35634786931397683112681367751, 7.09964062377997907717772034749, 8.645963212763147773751643674215, 8.846768203395262984579593176778, 9.825415577534778085788850462259, 10.93507854705696446556708009729, 11.33823241226993906262910766164, 12.87621409939849304338204397150, 13.32932010916070356905866113244, 14.42478382858237728831045644709, 15.33668974110885581988608251445, 16.43926881792246532000931553469, 16.53113069873533837985788904387, 17.65978435455203681643641082054, 17.96913617909271316794322981383

Graph of the $Z$-function along the critical line