Properties

Label 4-799e2-1.1-c0e2-0-1
Degree $4$
Conductor $638401$
Sign $1$
Analytic cond. $0.159003$
Root an. cond. $0.631468$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·9-s + 3·16-s + 2·17-s − 4·36-s + 2·47-s + 2·49-s − 4·53-s − 4·64-s − 4·68-s + 3·81-s − 4·83-s − 4·89-s + 127-s + 131-s + 137-s + 139-s + 6·144-s + 149-s + 151-s + 4·153-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 2·4-s + 2·9-s + 3·16-s + 2·17-s − 4·36-s + 2·47-s + 2·49-s − 4·53-s − 4·64-s − 4·68-s + 3·81-s − 4·83-s − 4·89-s + 127-s + 131-s + 137-s + 139-s + 6·144-s + 149-s + 151-s + 4·153-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 638401 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 638401 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(638401\)    =    \(17^{2} \cdot 47^{2}\)
Sign: $1$
Analytic conductor: \(0.159003\)
Root analytic conductor: \(0.631468\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 638401,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7261492744\)
\(L(\frac12)\) \(\approx\) \(0.7261492744\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad17$C_1$ \( ( 1 - T )^{2} \)
47$C_1$ \( ( 1 - T )^{2} \)
good2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
5$C_2^2$ \( 1 + T^{4} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2^2$ \( 1 + T^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2^2$ \( 1 + T^{4} \)
29$C_2^2$ \( 1 + T^{4} \)
31$C_2^2$ \( 1 + T^{4} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2^2$ \( 1 + T^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$ \( ( 1 + T )^{4} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$ \( ( 1 + T )^{4} \)
89$C_1$ \( ( 1 + T )^{4} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33348361815926683397981824937, −10.20096756840628288540195937784, −9.746689803232361517317193832081, −9.525512684286570793824743923626, −9.153165933436031485356074601632, −8.601506233735390959462843882198, −8.063400185100257425644525510662, −7.87659228110464969574719270538, −7.17969365198483845132119138473, −7.15680822313243672563890265455, −6.16401959531337729925372970235, −5.60388819097852932686624349106, −5.42920296113198987194662399730, −4.70967097461339598712791931569, −4.23653969168912101210015572507, −4.13220800955407124516127928695, −3.42870379421018278691341708730, −2.89506002251114788168038342748, −1.48972277724596277388070807012, −1.14367168884042813850767301987, 1.14367168884042813850767301987, 1.48972277724596277388070807012, 2.89506002251114788168038342748, 3.42870379421018278691341708730, 4.13220800955407124516127928695, 4.23653969168912101210015572507, 4.70967097461339598712791931569, 5.42920296113198987194662399730, 5.60388819097852932686624349106, 6.16401959531337729925372970235, 7.15680822313243672563890265455, 7.17969365198483845132119138473, 7.87659228110464969574719270538, 8.063400185100257425644525510662, 8.601506233735390959462843882198, 9.153165933436031485356074601632, 9.525512684286570793824743923626, 9.746689803232361517317193832081, 10.20096756840628288540195937784, 10.33348361815926683397981824937

Graph of the $Z$-function along the critical line