Properties

Label 2-28e2-1.1-c5-0-95
Degree $2$
Conductor $784$
Sign $-1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19.6·3-s + 46.7·5-s + 143.·9-s − 666.·11-s + 650.·13-s + 918.·15-s − 1.18e3·17-s − 1.56e3·19-s + 1.10e3·23-s − 939.·25-s − 1.96e3·27-s + 2.39e3·29-s − 2.04e3·31-s − 1.30e4·33-s + 1.07e3·37-s + 1.27e4·39-s − 1.09e3·41-s − 1.65e4·43-s + 6.68e3·45-s − 8.29e3·47-s − 2.33e4·51-s + 5.51e3·53-s − 3.11e4·55-s − 3.07e4·57-s − 1.42e4·59-s + 1.42e4·61-s + 3.04e4·65-s + ⋯
L(s)  = 1  + 1.26·3-s + 0.836·5-s + 0.588·9-s − 1.65·11-s + 1.06·13-s + 1.05·15-s − 0.996·17-s − 0.994·19-s + 0.433·23-s − 0.300·25-s − 0.518·27-s + 0.529·29-s − 0.382·31-s − 2.09·33-s + 0.129·37-s + 1.34·39-s − 0.102·41-s − 1.36·43-s + 0.492·45-s − 0.547·47-s − 1.25·51-s + 0.269·53-s − 1.38·55-s − 1.25·57-s − 0.532·59-s + 0.489·61-s + 0.892·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 19.6T + 243T^{2} \)
5 \( 1 - 46.7T + 3.12e3T^{2} \)
11 \( 1 + 666.T + 1.61e5T^{2} \)
13 \( 1 - 650.T + 3.71e5T^{2} \)
17 \( 1 + 1.18e3T + 1.41e6T^{2} \)
19 \( 1 + 1.56e3T + 2.47e6T^{2} \)
23 \( 1 - 1.10e3T + 6.43e6T^{2} \)
29 \( 1 - 2.39e3T + 2.05e7T^{2} \)
31 \( 1 + 2.04e3T + 2.86e7T^{2} \)
37 \( 1 - 1.07e3T + 6.93e7T^{2} \)
41 \( 1 + 1.09e3T + 1.15e8T^{2} \)
43 \( 1 + 1.65e4T + 1.47e8T^{2} \)
47 \( 1 + 8.29e3T + 2.29e8T^{2} \)
53 \( 1 - 5.51e3T + 4.18e8T^{2} \)
59 \( 1 + 1.42e4T + 7.14e8T^{2} \)
61 \( 1 - 1.42e4T + 8.44e8T^{2} \)
67 \( 1 + 1.97e4T + 1.35e9T^{2} \)
71 \( 1 + 6.45e4T + 1.80e9T^{2} \)
73 \( 1 + 2.85e4T + 2.07e9T^{2} \)
79 \( 1 - 3.06e4T + 3.07e9T^{2} \)
83 \( 1 + 675.T + 3.93e9T^{2} \)
89 \( 1 + 1.25e5T + 5.58e9T^{2} \)
97 \( 1 - 2.29e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.866241860365407492421951428571, −8.482048538735100388155159538790, −7.62516687063010358214969054364, −6.49508415947163608567507215202, −5.60207120455315291790207734727, −4.50093232848477509221009277774, −3.29346501538608190757707685264, −2.45718627201263256573661007688, −1.72169686179251972220121097001, 0, 1.72169686179251972220121097001, 2.45718627201263256573661007688, 3.29346501538608190757707685264, 4.50093232848477509221009277774, 5.60207120455315291790207734727, 6.49508415947163608567507215202, 7.62516687063010358214969054364, 8.482048538735100388155159538790, 8.866241860365407492421951428571

Graph of the $Z$-function along the critical line