Properties

Label 2-28e2-1.1-c3-0-32
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $46.2574$
Root an. cond. $6.80128$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.63·3-s + 5.91·5-s + 65.8·9-s + 18.3·11-s − 90.9·13-s + 57.0·15-s + 91.9·17-s + 124.·19-s − 65.0·23-s − 89.9·25-s + 374.·27-s + 83.4·29-s + 165.·31-s + 177.·33-s + 310.·37-s − 876.·39-s + 181.·41-s − 82.3·43-s + 389.·45-s − 367.·47-s + 885.·51-s + 52.6·53-s + 108.·55-s + 1.19e3·57-s − 561.·59-s + 276.·61-s − 538.·65-s + ⋯
L(s)  = 1  + 1.85·3-s + 0.529·5-s + 2.44·9-s + 0.503·11-s − 1.94·13-s + 0.981·15-s + 1.31·17-s + 1.50·19-s − 0.589·23-s − 0.719·25-s + 2.67·27-s + 0.534·29-s + 0.957·31-s + 0.933·33-s + 1.38·37-s − 3.60·39-s + 0.691·41-s − 0.292·43-s + 1.29·45-s − 1.14·47-s + 2.43·51-s + 0.136·53-s + 0.266·55-s + 2.78·57-s − 1.23·59-s + 0.579·61-s − 1.02·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(46.2574\)
Root analytic conductor: \(6.80128\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.827059255\)
\(L(\frac12)\) \(\approx\) \(4.827059255\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 9.63T + 27T^{2} \)
5 \( 1 - 5.91T + 125T^{2} \)
11 \( 1 - 18.3T + 1.33e3T^{2} \)
13 \( 1 + 90.9T + 2.19e3T^{2} \)
17 \( 1 - 91.9T + 4.91e3T^{2} \)
19 \( 1 - 124.T + 6.85e3T^{2} \)
23 \( 1 + 65.0T + 1.21e4T^{2} \)
29 \( 1 - 83.4T + 2.43e4T^{2} \)
31 \( 1 - 165.T + 2.97e4T^{2} \)
37 \( 1 - 310.T + 5.06e4T^{2} \)
41 \( 1 - 181.T + 6.89e4T^{2} \)
43 \( 1 + 82.3T + 7.95e4T^{2} \)
47 \( 1 + 367.T + 1.03e5T^{2} \)
53 \( 1 - 52.6T + 1.48e5T^{2} \)
59 \( 1 + 561.T + 2.05e5T^{2} \)
61 \( 1 - 276.T + 2.26e5T^{2} \)
67 \( 1 - 60.1T + 3.00e5T^{2} \)
71 \( 1 - 155.T + 3.57e5T^{2} \)
73 \( 1 - 731.T + 3.89e5T^{2} \)
79 \( 1 + 290.T + 4.93e5T^{2} \)
83 \( 1 - 43.5T + 5.71e5T^{2} \)
89 \( 1 + 393.T + 7.04e5T^{2} \)
97 \( 1 - 521.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.689417624946326628657432466885, −9.340874520523949061247282226911, −7.892467118003388220251855094313, −7.79778017600795823277505413376, −6.68638893680957192008339725506, −5.29730521991112322521795846649, −4.22708408556563881367061939228, −3.11046096880991467355778484612, −2.42717953890251099754563115722, −1.27180874924578794722909264041, 1.27180874924578794722909264041, 2.42717953890251099754563115722, 3.11046096880991467355778484612, 4.22708408556563881367061939228, 5.29730521991112322521795846649, 6.68638893680957192008339725506, 7.79778017600795823277505413376, 7.892467118003388220251855094313, 9.340874520523949061247282226911, 9.689417624946326628657432466885

Graph of the $Z$-function along the critical line