Properties

Label 2-28e2-1.1-c3-0-35
Degree $2$
Conductor $784$
Sign $-1$
Analytic cond. $46.2574$
Root an. cond. $6.80128$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.54·3-s + 15.8·5-s + 64.0·9-s − 21.7·11-s − 21.3·13-s − 150.·15-s − 75.7·17-s − 21.2·19-s + 102.·23-s + 124.·25-s − 353.·27-s + 91.0·29-s + 66.8·31-s + 208.·33-s − 168.·37-s + 203.·39-s − 101.·41-s + 314.·43-s + 1.01e3·45-s + 269.·47-s + 723.·51-s + 308.·53-s − 344.·55-s + 203.·57-s − 808.·59-s − 653.·61-s − 337.·65-s + ⋯
L(s)  = 1  − 1.83·3-s + 1.41·5-s + 2.37·9-s − 0.597·11-s − 0.455·13-s − 2.59·15-s − 1.08·17-s − 0.257·19-s + 0.927·23-s + 0.999·25-s − 2.52·27-s + 0.582·29-s + 0.387·31-s + 1.09·33-s − 0.749·37-s + 0.836·39-s − 0.386·41-s + 1.11·43-s + 3.35·45-s + 0.835·47-s + 1.98·51-s + 0.800·53-s − 0.844·55-s + 0.472·57-s − 1.78·59-s − 1.37·61-s − 0.643·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(46.2574\)
Root analytic conductor: \(6.80128\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 784,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 9.54T + 27T^{2} \)
5 \( 1 - 15.8T + 125T^{2} \)
11 \( 1 + 21.7T + 1.33e3T^{2} \)
13 \( 1 + 21.3T + 2.19e3T^{2} \)
17 \( 1 + 75.7T + 4.91e3T^{2} \)
19 \( 1 + 21.2T + 6.85e3T^{2} \)
23 \( 1 - 102.T + 1.21e4T^{2} \)
29 \( 1 - 91.0T + 2.43e4T^{2} \)
31 \( 1 - 66.8T + 2.97e4T^{2} \)
37 \( 1 + 168.T + 5.06e4T^{2} \)
41 \( 1 + 101.T + 6.89e4T^{2} \)
43 \( 1 - 314.T + 7.95e4T^{2} \)
47 \( 1 - 269.T + 1.03e5T^{2} \)
53 \( 1 - 308.T + 1.48e5T^{2} \)
59 \( 1 + 808.T + 2.05e5T^{2} \)
61 \( 1 + 653.T + 2.26e5T^{2} \)
67 \( 1 - 473.T + 3.00e5T^{2} \)
71 \( 1 + 157.T + 3.57e5T^{2} \)
73 \( 1 + 270.T + 3.89e5T^{2} \)
79 \( 1 + 325.T + 4.93e5T^{2} \)
83 \( 1 + 1.03e3T + 5.71e5T^{2} \)
89 \( 1 + 149.T + 7.04e5T^{2} \)
97 \( 1 - 1.86e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.764735272874706297503887207132, −8.890419688107218583602598573320, −7.34360747742967454861581124188, −6.56569440569713870297853119912, −5.90225765126462179774303280014, −5.16373407623290617315156685419, −4.47278941957814084144023490126, −2.49931006589019477622607094301, −1.31410746435531060407858701246, 0, 1.31410746435531060407858701246, 2.49931006589019477622607094301, 4.47278941957814084144023490126, 5.16373407623290617315156685419, 5.90225765126462179774303280014, 6.56569440569713870297853119912, 7.34360747742967454861581124188, 8.890419688107218583602598573320, 9.764735272874706297503887207132

Graph of the $Z$-function along the critical line