Properties

Label 4-28e4-1.1-c3e2-0-3
Degree $4$
Conductor $614656$
Sign $1$
Analytic cond. $2139.75$
Root an. cond. $6.80128$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14·5-s − 17·9-s − 32·11-s + 28·13-s + 154·17-s − 224·19-s − 68·23-s + 45·25-s − 236·29-s − 196·31-s + 346·37-s + 420·41-s + 344·43-s − 238·45-s + 84·47-s − 438·53-s − 448·55-s − 56·59-s − 98·61-s + 392·65-s − 336·67-s − 896·71-s − 966·73-s + 52·79-s − 440·81-s + 392·83-s + 2.15e3·85-s + ⋯
L(s)  = 1  + 1.25·5-s − 0.629·9-s − 0.877·11-s + 0.597·13-s + 2.19·17-s − 2.70·19-s − 0.616·23-s + 9/25·25-s − 1.51·29-s − 1.13·31-s + 1.53·37-s + 1.59·41-s + 1.21·43-s − 0.788·45-s + 0.260·47-s − 1.13·53-s − 1.09·55-s − 0.123·59-s − 0.205·61-s + 0.748·65-s − 0.612·67-s − 1.49·71-s − 1.54·73-s + 0.0740·79-s − 0.603·81-s + 0.518·83-s + 2.75·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 614656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 614656 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(614656\)    =    \(2^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2139.75\)
Root analytic conductor: \(6.80128\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 614656,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.994892827\)
\(L(\frac12)\) \(\approx\) \(1.994892827\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 17 T^{2} + p^{6} T^{4} \)
5$D_{4}$ \( 1 - 14 T + 151 T^{2} - 14 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 32 T + 1105 T^{2} + 32 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 28 T + 3998 T^{2} - 28 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 154 T + 15163 T^{2} - 154 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 224 T + 25929 T^{2} + 224 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 68 T + 23677 T^{2} + 68 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 236 T + 33694 T^{2} + 236 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 196 T + 67373 T^{2} + 196 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 346 T + 65967 T^{2} - 346 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 420 T + 176614 T^{2} - 420 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2$ \( ( 1 - 4 p T + p^{3} T^{2} )^{2} \)
47$D_{4}$ \( 1 - 84 T + 201085 T^{2} - 84 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 438 T + 280447 T^{2} + 438 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 56 T + 360889 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 98 T + 253751 T^{2} + 98 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 336 T + 627937 T^{2} + 336 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 896 T + 800494 T^{2} + 896 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 966 T + 187 p^{2} T^{2} + 966 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 52 T + 332261 T^{2} - 52 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 392 T + 895462 T^{2} - 392 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 294 T + 1298347 T^{2} + 294 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 420 T + 1655734 T^{2} - 420 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27964200336954694958556678218, −9.703539498562822683337976313806, −9.173095844843444077270337112791, −9.035641625722344585351170423949, −8.398096148381182884498805131543, −8.004761630587589296442409993244, −7.41952979003001832770637516285, −7.40153099518458197574105199548, −6.26150272445885971255217633353, −6.00723360145756718275011750517, −5.71733335549285427546974616114, −5.66710954099127996557867567341, −4.59537102160107639425333597526, −4.34818989376491098157924747890, −3.54835392666532120035136860562, −3.08026440410784046737423325332, −2.27172424655738560167013465477, −2.06859022429849064430480748692, −1.28965645719847951117285017960, −0.37471338841160090817318730000, 0.37471338841160090817318730000, 1.28965645719847951117285017960, 2.06859022429849064430480748692, 2.27172424655738560167013465477, 3.08026440410784046737423325332, 3.54835392666532120035136860562, 4.34818989376491098157924747890, 4.59537102160107639425333597526, 5.66710954099127996557867567341, 5.71733335549285427546974616114, 6.00723360145756718275011750517, 6.26150272445885971255217633353, 7.40153099518458197574105199548, 7.41952979003001832770637516285, 8.004761630587589296442409993244, 8.398096148381182884498805131543, 9.035641625722344585351170423949, 9.173095844843444077270337112791, 9.703539498562822683337976313806, 10.27964200336954694958556678218

Graph of the $Z$-function along the critical line