Properties

Label 8-28e8-1.1-c1e4-0-11
Degree $8$
Conductor $377801998336$
Sign $1$
Analytic cond. $1535.93$
Root an. cond. $2.50205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 2·4-s + 2·5-s + 4·6-s + 4·8-s + 2·9-s + 4·10-s − 2·11-s + 4·12-s − 4·13-s + 4·15-s + 8·16-s + 4·17-s + 4·18-s − 6·19-s + 4·20-s − 4·22-s + 8·24-s + 2·25-s − 8·26-s − 8·27-s + 12·29-s + 8·30-s + 16·31-s + 8·32-s − 4·33-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 4-s + 0.894·5-s + 1.63·6-s + 1.41·8-s + 2/3·9-s + 1.26·10-s − 0.603·11-s + 1.15·12-s − 1.10·13-s + 1.03·15-s + 2·16-s + 0.970·17-s + 0.942·18-s − 1.37·19-s + 0.894·20-s − 0.852·22-s + 1.63·24-s + 2/5·25-s − 1.56·26-s − 1.53·27-s + 2.22·29-s + 1.46·30-s + 2.87·31-s + 1.41·32-s − 0.696·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1535.93\)
Root analytic conductor: \(2.50205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(14.70375117\)
\(L(\frac12)\) \(\approx\) \(14.70375117\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good3$C_2^3$ \( 1 - 2 T + 2 T^{2} + 8 T^{3} - 17 T^{4} + 8 p T^{5} + 2 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
5$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
11$C_2^3$ \( 1 + 2 T + 2 T^{2} - 40 T^{3} - 161 T^{4} - 40 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^3$ \( 1 + 6 T + 18 T^{2} - 120 T^{3} - 721 T^{4} - 120 p T^{5} + 18 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^3$ \( 1 + 10 T^{2} - 429 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( ( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 + 6 T + 18 T^{2} - 336 T^{3} - 2377 T^{4} - 336 p T^{5} + 18 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2$ \( ( 1 - p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 8 T + 17 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 14 T + 143 T^{2} - 14 p T^{3} + p^{2} T^{4} )( 1 + 4 T - 37 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
59$C_2^3$ \( 1 - 6 T + 18 T^{2} + 600 T^{3} - 5281 T^{4} + 600 p T^{5} + 18 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^3$ \( 1 - 18 T + 162 T^{2} - 720 T^{3} + 2759 T^{4} - 720 p T^{5} + 162 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2^3$ \( 1 - 10 T + 50 T^{2} + 840 T^{3} - 8689 T^{4} + 840 p T^{5} + 50 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^3$ \( 1 + 130 T^{2} + 11571 T^{4} + 130 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^3$ \( 1 + 162 T^{2} + 18323 T^{4} + 162 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47302820336999712822516299098, −7.02353804777793697501279000603, −6.89111219209469923537613511063, −6.82227595370972107388549556394, −6.32087354075610996175627755323, −6.26294337375910027767456182882, −5.86351615621741669134261876481, −5.84135120913581840798836824872, −5.38401274092848588805536387552, −5.07311198676537972605702712708, −5.07158173708198933825912680102, −4.76521228865707865587748470639, −4.65042219647258950486118344057, −4.06390301658789693997804727006, −3.91567929994605170749863323552, −3.86174722923435438824818566210, −3.65876892468198362399949278965, −2.77174750763484560347845687918, −2.76588440608937388935055441829, −2.75791260802413482393592779634, −2.42631594368427233076528805643, −2.03398092580905579983917475861, −1.63568432097551402479036568706, −1.20948754995675415169234022996, −0.68936197981041677942092310878, 0.68936197981041677942092310878, 1.20948754995675415169234022996, 1.63568432097551402479036568706, 2.03398092580905579983917475861, 2.42631594368427233076528805643, 2.75791260802413482393592779634, 2.76588440608937388935055441829, 2.77174750763484560347845687918, 3.65876892468198362399949278965, 3.86174722923435438824818566210, 3.91567929994605170749863323552, 4.06390301658789693997804727006, 4.65042219647258950486118344057, 4.76521228865707865587748470639, 5.07158173708198933825912680102, 5.07311198676537972605702712708, 5.38401274092848588805536387552, 5.84135120913581840798836824872, 5.86351615621741669134261876481, 6.26294337375910027767456182882, 6.32087354075610996175627755323, 6.82227595370972107388549556394, 6.89111219209469923537613511063, 7.02353804777793697501279000603, 7.47302820336999712822516299098

Graph of the $Z$-function along the critical line