# Properties

 Degree $2$ Conductor $784$ Sign $-0.944 - 0.327i$ Motivic weight $1$ Primitive yes Self-dual no Analytic rank $1$

# Learn more about

## Dirichlet series

 L(s)  = 1 − 3-s − 1.73i·5-s − 2·9-s + 1.73i·11-s + 1.73i·15-s − 5.19i·17-s − 7·19-s + 8.66i·23-s + 2.00·25-s + 5·27-s − 6·29-s − 5·31-s − 1.73i·33-s − 5·37-s + 6.92i·41-s + ⋯
 L(s)  = 1 − 0.577·3-s − 0.774i·5-s − 0.666·9-s + 0.522i·11-s + 0.447i·15-s − 1.26i·17-s − 1.60·19-s + 1.80i·23-s + 0.400·25-s + 0.962·27-s − 1.11·29-s − 0.898·31-s − 0.301i·33-s − 0.821·37-s + 1.08i·41-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 - 0.327i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 - 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$784$$    =    $$2^{4} \cdot 7^{2}$$ Sign: $-0.944 - 0.327i$ Motivic weight: $$1$$ Character: $\chi_{784} (783, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$1$$ Selberg data: $$(2,\ 784,\ (\ :1/2),\ -0.944 - 0.327i)$$

## Particular Values

 $$L(1)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
7 $$1$$
good3 $$1 + T + 3T^{2}$$
5 $$1 + 1.73iT - 5T^{2}$$
11 $$1 - 1.73iT - 11T^{2}$$
13 $$1 - 13T^{2}$$
17 $$1 + 5.19iT - 17T^{2}$$
19 $$1 + 7T + 19T^{2}$$
23 $$1 - 8.66iT - 23T^{2}$$
29 $$1 + 6T + 29T^{2}$$
31 $$1 + 5T + 31T^{2}$$
37 $$1 + 5T + 37T^{2}$$
41 $$1 - 6.92iT - 41T^{2}$$
43 $$1 - 3.46iT - 43T^{2}$$
47 $$1 + 3T + 47T^{2}$$
53 $$1 + 9T + 53T^{2}$$
59 $$1 + 9T + 59T^{2}$$
61 $$1 + 8.66iT - 61T^{2}$$
67 $$1 + 5.19iT - 67T^{2}$$
71 $$1 + 3.46iT - 71T^{2}$$
73 $$1 - 1.73iT - 73T^{2}$$
79 $$1 + 5.19iT - 79T^{2}$$
83 $$1 + 12T + 83T^{2}$$
89 $$1 - 12.1iT - 89T^{2}$$
97 $$1 - 6.92iT - 97T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−9.643056866037542507659769792663, −9.112175241764027222849099826751, −8.147538782730181230325227529983, −7.20485023568168009974022485961, −6.18300725804138709988492524008, −5.25680477505961232193244877553, −4.62396189926426788124148700380, −3.24897452515178296615306938291, −1.73270708803653011484508016380, 0, 2.12425479085155313175740843581, 3.32709934635960876556728387188, 4.43140932129377275546216121694, 5.72246113567273475562701106067, 6.29576725602317367963590051517, 7.10152964215978916313235657320, 8.424139223477214800317221720020, 8.811387563063235717931825421809, 10.35604132320528957203170963425