L(s) = 1 | + (−0.380 − 1.17i)2-s + (2.02 − 0.431i)3-s + (0.389 − 0.283i)4-s + (−1.27 − 2.21i)6-s + (3.47 + 1.54i)7-s + (−2.47 − 1.79i)8-s + (1.19 − 0.531i)9-s + (0.393 + 3.74i)11-s + (0.668 − 0.742i)12-s + (1.76 + 1.95i)13-s + (0.489 − 4.66i)14-s + (−0.866 + 2.66i)16-s + (0.394 − 3.75i)17-s + (−1.07 − 1.19i)18-s + (4.08 − 4.53i)19-s + ⋯ |
L(s) = 1 | + (−0.269 − 0.828i)2-s + (1.17 − 0.249i)3-s + (0.194 − 0.141i)4-s + (−0.521 − 0.903i)6-s + (1.31 + 0.584i)7-s + (−0.874 − 0.635i)8-s + (0.397 − 0.177i)9-s + (0.118 + 1.12i)11-s + (0.193 − 0.214i)12-s + (0.489 + 0.543i)13-s + (0.130 − 1.24i)14-s + (−0.216 + 0.666i)16-s + (0.0956 − 0.910i)17-s + (−0.253 − 0.281i)18-s + (0.936 − 1.03i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.272 + 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.272 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.92707 - 1.45655i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.92707 - 1.45655i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 31 | \( 1 + (3.88 - 3.98i)T \) |
good | 2 | \( 1 + (0.380 + 1.17i)T + (-1.61 + 1.17i)T^{2} \) |
| 3 | \( 1 + (-2.02 + 0.431i)T + (2.74 - 1.22i)T^{2} \) |
| 7 | \( 1 + (-3.47 - 1.54i)T + (4.68 + 5.20i)T^{2} \) |
| 11 | \( 1 + (-0.393 - 3.74i)T + (-10.7 + 2.28i)T^{2} \) |
| 13 | \( 1 + (-1.76 - 1.95i)T + (-1.35 + 12.9i)T^{2} \) |
| 17 | \( 1 + (-0.394 + 3.75i)T + (-16.6 - 3.53i)T^{2} \) |
| 19 | \( 1 + (-4.08 + 4.53i)T + (-1.98 - 18.8i)T^{2} \) |
| 23 | \( 1 + (-0.736 - 0.534i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (2.10 + 6.47i)T + (-23.4 + 17.0i)T^{2} \) |
| 37 | \( 1 + (0.907 + 1.57i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.329 + 0.0700i)T + (37.4 + 16.6i)T^{2} \) |
| 43 | \( 1 + (2.59 - 2.88i)T + (-4.49 - 42.7i)T^{2} \) |
| 47 | \( 1 + (-0.367 + 1.13i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.14 + 0.953i)T + (35.4 - 39.3i)T^{2} \) |
| 59 | \( 1 + (7.60 - 1.61i)T + (53.8 - 23.9i)T^{2} \) |
| 61 | \( 1 + 2.72T + 61T^{2} \) |
| 67 | \( 1 + (3.71 - 6.42i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.65 - 2.07i)T + (47.5 - 52.7i)T^{2} \) |
| 73 | \( 1 + (-0.563 - 5.36i)T + (-71.4 + 15.1i)T^{2} \) |
| 79 | \( 1 + (-1.01 + 9.68i)T + (-77.2 - 16.4i)T^{2} \) |
| 83 | \( 1 + (8.21 + 1.74i)T + (75.8 + 33.7i)T^{2} \) |
| 89 | \( 1 + (4.12 - 2.99i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-8.82 + 6.41i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.974302316017232530245683662026, −9.214922634083252265927763913576, −8.753550211246302415156258445061, −7.62974461065608297465248701132, −7.01336783999271391312565704897, −5.56281911916442418432443616787, −4.49213136710224422976632021020, −3.12634982125920203799986567642, −2.24048370601894734413796709289, −1.51555686046893760107389963261,
1.61960789470263756630208142959, 3.14224075389555645231171859271, 3.80663279845126965875208173464, 5.34219924912877308427473076552, 6.13567091486493249448549112302, 7.48369718205490624580262071465, 7.969453428877856449317306244871, 8.504711775665484470762082866265, 9.177026860347860999298973556716, 10.49278483374839137071381600747