Properties

Label 2-770-385.164-c1-0-7
Degree $2$
Conductor $770$
Sign $0.831 - 0.554i$
Analytic cond. $6.14848$
Root an. cond. $2.47961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.730 + 1.26i)3-s + (−0.499 + 0.866i)4-s + (−2.18 − 0.484i)5-s + 1.46·6-s + (−1.48 − 2.18i)7-s + 0.999·8-s + (0.433 + 0.751i)9-s + (0.672 + 2.13i)10-s + (−2.99 − 1.41i)11-s + (−0.730 − 1.26i)12-s − 4.41i·13-s + (−1.15 + 2.38i)14-s + (2.20 − 2.40i)15-s + (−0.5 − 0.866i)16-s + (6.76 + 3.90i)17-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.421 + 0.730i)3-s + (−0.249 + 0.433i)4-s + (−0.976 − 0.216i)5-s + 0.596·6-s + (−0.562 − 0.827i)7-s + 0.353·8-s + (0.144 + 0.250i)9-s + (0.212 + 0.674i)10-s + (−0.904 − 0.426i)11-s + (−0.210 − 0.365i)12-s − 1.22i·13-s + (−0.307 + 0.636i)14-s + (0.569 − 0.621i)15-s + (−0.125 − 0.216i)16-s + (1.64 + 0.946i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.831 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.831 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(770\)    =    \(2 \cdot 5 \cdot 7 \cdot 11\)
Sign: $0.831 - 0.554i$
Analytic conductor: \(6.14848\)
Root analytic conductor: \(2.47961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{770} (549, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 770,\ (\ :1/2),\ 0.831 - 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.627795 + 0.190131i\)
\(L(\frac12)\) \(\approx\) \(0.627795 + 0.190131i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 + (2.18 + 0.484i)T \)
7 \( 1 + (1.48 + 2.18i)T \)
11 \( 1 + (2.99 + 1.41i)T \)
good3 \( 1 + (0.730 - 1.26i)T + (-1.5 - 2.59i)T^{2} \)
13 \( 1 + 4.41iT - 13T^{2} \)
17 \( 1 + (-6.76 - 3.90i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.986 - 1.70i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.107 - 0.0621i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 - 9.04iT - 29T^{2} \)
31 \( 1 + (-2.78 - 1.60i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (9.23 - 5.33i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 - 4.22T + 41T^{2} \)
43 \( 1 - 4.97T + 43T^{2} \)
47 \( 1 + (1.30 + 2.26i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-8.19 - 4.73i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (-8.46 - 4.88i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.840 - 1.45i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (2.21 + 1.27i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 11.5T + 71T^{2} \)
73 \( 1 + (8.48 + 4.89i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-6.18 + 3.57i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + 3.51iT - 83T^{2} \)
89 \( 1 + (0.291 - 0.168i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43138196624122558362609111938, −10.06077444791333452892045667152, −8.680052364693747373882126843253, −7.87419525222568193846909181053, −7.32420015149040541857594974032, −5.66947884011422069642807626216, −4.88398492575113156419535063844, −3.67721525384790391260261645148, −3.21599977189500025996364170342, −0.968854319859111033608555284599, 0.53420471036138909733241331488, 2.40206522149219935647154221370, 3.82231852704746812625792705901, 5.11169848849708742085639668319, 6.01593433687087317137094979969, 6.97995383190091261014713148789, 7.43430707101300486740002944364, 8.308782014521568132454932203214, 9.398502707676113504385870932068, 9.965805634351841119515368500828

Graph of the $Z$-function along the critical line