Properties

Label 2-770-385.157-c1-0-44
Degree $2$
Conductor $770$
Sign $-0.713 - 0.700i$
Analytic cond. $6.14848$
Root an. cond. $2.47961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.358 − 0.933i)2-s + (−1.20 − 1.85i)3-s + (−0.743 + 0.669i)4-s + (1.76 + 1.36i)5-s + (−1.29 + 1.78i)6-s + (−2.10 − 1.60i)7-s + (0.891 + 0.453i)8-s + (−0.764 + 1.71i)9-s + (0.641 − 2.14i)10-s + (1.56 − 2.92i)11-s + (2.13 + 0.571i)12-s + (−2.41 − 0.381i)13-s + (−0.745 + 2.53i)14-s + (0.402 − 4.92i)15-s + (0.104 − 0.994i)16-s + (−0.578 + 1.50i)17-s + ⋯
L(s)  = 1  + (−0.253 − 0.660i)2-s + (−0.694 − 1.06i)3-s + (−0.371 + 0.334i)4-s + (0.791 + 0.611i)5-s + (−0.530 + 0.729i)6-s + (−0.794 − 0.606i)7-s + (0.315 + 0.160i)8-s + (−0.254 + 0.572i)9-s + (0.202 − 0.677i)10-s + (0.470 − 0.882i)11-s + (0.615 + 0.165i)12-s + (−0.668 − 0.105i)13-s + (−0.199 + 0.678i)14-s + (0.104 − 1.27i)15-s + (0.0261 − 0.248i)16-s + (−0.140 + 0.365i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.713 - 0.700i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.713 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(770\)    =    \(2 \cdot 5 \cdot 7 \cdot 11\)
Sign: $-0.713 - 0.700i$
Analytic conductor: \(6.14848\)
Root analytic conductor: \(2.47961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{770} (157, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 770,\ (\ :1/2),\ -0.713 - 0.700i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.183182 + 0.447728i\)
\(L(\frac12)\) \(\approx\) \(0.183182 + 0.447728i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.358 + 0.933i)T \)
5 \( 1 + (-1.76 - 1.36i)T \)
7 \( 1 + (2.10 + 1.60i)T \)
11 \( 1 + (-1.56 + 2.92i)T \)
good3 \( 1 + (1.20 + 1.85i)T + (-1.22 + 2.74i)T^{2} \)
13 \( 1 + (2.41 + 0.381i)T + (12.3 + 4.01i)T^{2} \)
17 \( 1 + (0.578 - 1.50i)T + (-12.6 - 11.3i)T^{2} \)
19 \( 1 + (-2.01 + 2.24i)T + (-1.98 - 18.8i)T^{2} \)
23 \( 1 + (8.98 + 2.40i)T + (19.9 + 11.5i)T^{2} \)
29 \( 1 + (6.48 + 2.10i)T + (23.4 + 17.0i)T^{2} \)
31 \( 1 + (-5.72 + 0.601i)T + (30.3 - 6.44i)T^{2} \)
37 \( 1 + (3.42 + 2.22i)T + (15.0 + 33.8i)T^{2} \)
41 \( 1 + (1.53 - 0.498i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (4.77 - 4.77i)T - 43iT^{2} \)
47 \( 1 + (0.165 + 3.15i)T + (-46.7 + 4.91i)T^{2} \)
53 \( 1 + (-9.74 - 7.89i)T + (11.0 + 51.8i)T^{2} \)
59 \( 1 + (0.346 + 0.384i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (6.65 + 0.699i)T + (59.6 + 12.6i)T^{2} \)
67 \( 1 + (3.51 - 0.942i)T + (58.0 - 33.5i)T^{2} \)
71 \( 1 + (-0.855 - 0.621i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-0.531 + 10.1i)T + (-72.6 - 7.63i)T^{2} \)
79 \( 1 + (2.67 - 5.99i)T + (-52.8 - 58.7i)T^{2} \)
83 \( 1 + (-0.546 - 3.45i)T + (-78.9 + 25.6i)T^{2} \)
89 \( 1 + (5.21 + 9.03i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-0.833 + 5.26i)T + (-92.2 - 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.967501960991343405381233795840, −9.199564044305234422628579446670, −7.928125658530382840923387408842, −7.04634408265897657629487083517, −6.32102358579437750143006102364, −5.66315128453489214421052316004, −4.01131183446279479127066518458, −2.85693123701797620351553137184, −1.66913120362514125178067689194, −0.28084117822077556589440418452, 1.99430957506096124649244652416, 3.83972777200680828663069077910, 4.85591298655948373273419815528, 5.52603769221016734354605576377, 6.22763421931893531551842213523, 7.26291922698334790510348147546, 8.510838625078209305174476697130, 9.508779380353490415430316349654, 9.786156653322660402009952633207, 10.31871136247107615832306805953

Graph of the $Z$-function along the critical line