Properties

Label 6-770e3-1.1-c1e3-0-1
Degree $6$
Conductor $456533000$
Sign $1$
Analytic cond. $232.436$
Root an. cond. $2.47961$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 2·3-s + 6·4-s + 3·5-s + 6·6-s − 3·7-s + 10·8-s + 9-s + 9·10-s + 3·11-s + 12·12-s + 2·13-s − 9·14-s + 6·15-s + 15·16-s + 2·17-s + 3·18-s − 6·19-s + 18·20-s − 6·21-s + 9·22-s + 10·23-s + 20·24-s + 6·25-s + 6·26-s − 18·28-s + 18·30-s + ⋯
L(s)  = 1  + 2.12·2-s + 1.15·3-s + 3·4-s + 1.34·5-s + 2.44·6-s − 1.13·7-s + 3.53·8-s + 1/3·9-s + 2.84·10-s + 0.904·11-s + 3.46·12-s + 0.554·13-s − 2.40·14-s + 1.54·15-s + 15/4·16-s + 0.485·17-s + 0.707·18-s − 1.37·19-s + 4.02·20-s − 1.30·21-s + 1.91·22-s + 2.08·23-s + 4.08·24-s + 6/5·25-s + 1.17·26-s − 3.40·28-s + 3.28·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{3} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(232.436\)
Root analytic conductor: \(2.47961\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{3} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(21.13508832\)
\(L(\frac12)\) \(\approx\) \(21.13508832\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{3} \)
5$C_1$ \( ( 1 - T )^{3} \)
7$C_1$ \( ( 1 + T )^{3} \)
11$C_1$ \( ( 1 - T )^{3} \)
good3$S_4\times C_2$ \( 1 - 2 T + p T^{2} - 4 T^{3} + p^{2} T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 - 2 T + 23 T^{2} - 36 T^{3} + 23 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 - 2 T + 23 T^{2} - 76 T^{3} + 23 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 + 6 T + 11 T^{2} - 4 T^{3} + 11 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 - 10 T + 95 T^{2} - 476 T^{3} + 95 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 21 T^{2} - 92 T^{3} + 21 p T^{4} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 + 12 T + 113 T^{2} + 712 T^{3} + 113 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 - 4 T + 109 T^{2} - 292 T^{3} + 109 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 4 T + 33 T^{2} - 12 p T^{3} + 33 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 8 T + 21 T^{2} + 160 T^{3} + 21 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 29 T^{2} - 128 T^{3} + 29 p T^{4} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 12 T + 141 T^{2} - 980 T^{3} + 141 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 + 4 T + 113 T^{2} + 344 T^{3} + 113 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 6 T + 83 T^{2} + 388 T^{3} + 83 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 - 4 T + 89 T^{2} - 600 T^{3} + 89 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + 28 T + 413 T^{2} + 4040 T^{3} + 413 p T^{4} + 28 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 14 T + 255 T^{2} + 2036 T^{3} + 255 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 18 T + 287 T^{2} - 2588 T^{3} + 287 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 8 T + 241 T^{2} + 1296 T^{3} + 241 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 - 18 T + 239 T^{2} - 1996 T^{3} + 239 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 + 4 T + 137 T^{2} + 1092 T^{3} + 137 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.194817351196831512690578516945, −8.858451861415374889270035817489, −8.680535259474458192668156599372, −8.660238336340254391117015878922, −7.73110618060552022528735855423, −7.62554813657593880164831646119, −7.31777770190098032370246379843, −7.00127292544751390939920300063, −6.63584654406059732046915504691, −6.50584601323233142255906927546, −5.95234927606692060360042708197, −5.88937226039169312449635433005, −5.79581028823222080102084912225, −5.17535889645264415655106091807, −4.95689128401345261924760801554, −4.47881869210866016638093045778, −4.07148139226543421518082482763, −3.85259624764558711104415686920, −3.53138046693611425161815401095, −3.04070474583460291639805908798, −2.81670410459936213519775161119, −2.56862858462667886089264267108, −2.07917122607290327788046218850, −1.56786654656033659953808894510, −1.09760716782707600895209307056, 1.09760716782707600895209307056, 1.56786654656033659953808894510, 2.07917122607290327788046218850, 2.56862858462667886089264267108, 2.81670410459936213519775161119, 3.04070474583460291639805908798, 3.53138046693611425161815401095, 3.85259624764558711104415686920, 4.07148139226543421518082482763, 4.47881869210866016638093045778, 4.95689128401345261924760801554, 5.17535889645264415655106091807, 5.79581028823222080102084912225, 5.88937226039169312449635433005, 5.95234927606692060360042708197, 6.50584601323233142255906927546, 6.63584654406059732046915504691, 7.00127292544751390939920300063, 7.31777770190098032370246379843, 7.62554813657593880164831646119, 7.73110618060552022528735855423, 8.660238336340254391117015878922, 8.680535259474458192668156599372, 8.858451861415374889270035817489, 9.194817351196831512690578516945

Graph of the $Z$-function along the critical line