Properties

Label 8-77e4-1.1-c1e4-0-0
Degree $8$
Conductor $35153041$
Sign $1$
Analytic cond. $0.142912$
Root an. cond. $0.784122$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 2·9-s − 12·11-s + 4·16-s − 12·23-s + 10·25-s + 8·36-s − 4·37-s − 48·44-s − 4·49-s − 16·64-s + 44·67-s + 36·71-s − 15·81-s − 48·92-s − 24·99-s + 40·100-s − 12·113-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + 8·144-s − 16·148-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2·4-s + 2/3·9-s − 3.61·11-s + 16-s − 2.50·23-s + 2·25-s + 4/3·36-s − 0.657·37-s − 7.23·44-s − 4/7·49-s − 2·64-s + 5.37·67-s + 4.27·71-s − 5/3·81-s − 5.00·92-s − 2.41·99-s + 4·100-s − 1.12·113-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2/3·144-s − 1.31·148-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35153041 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35153041 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(35153041\)    =    \(7^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(0.142912\)
Root analytic conductor: \(0.784122\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 35153041,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9834270573\)
\(L(\frac12)\) \(\approx\) \(0.9834270573\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
3$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 68 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 113 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 112 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )^{4} \)
71$C_2$ \( ( 1 - 9 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 136 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 173 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 149 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02392676508492289876608055419, −10.33685579134013357063090394577, −10.28226613420318595849526213367, −10.12998230872479206542644840832, −9.864859786780334358578785974913, −9.395875319706378008010643248436, −8.951487388338861586861358538532, −8.414570966927381454188131422040, −8.072187683008054892937878537238, −8.053007278593077786933402589079, −7.76468001337108502788456218067, −7.34063380060344316724817172191, −6.92519303809312994562885024199, −6.82062635626822745794787763240, −6.34346893034830953426613045021, −6.20543042379025854503750523003, −5.29394234540745949716918476449, −5.28719110765115007953962567184, −5.15122160219172806297229899427, −4.41761480213862959022213035276, −3.82069300975700524479502475637, −3.25780717647641430075884979789, −2.48357509766793217070371542497, −2.47464235229053040124719550329, −2.01979387140989027606721966788, 2.01979387140989027606721966788, 2.47464235229053040124719550329, 2.48357509766793217070371542497, 3.25780717647641430075884979789, 3.82069300975700524479502475637, 4.41761480213862959022213035276, 5.15122160219172806297229899427, 5.28719110765115007953962567184, 5.29394234540745949716918476449, 6.20543042379025854503750523003, 6.34346893034830953426613045021, 6.82062635626822745794787763240, 6.92519303809312994562885024199, 7.34063380060344316724817172191, 7.76468001337108502788456218067, 8.053007278593077786933402589079, 8.072187683008054892937878537238, 8.414570966927381454188131422040, 8.951487388338861586861358538532, 9.395875319706378008010643248436, 9.864859786780334358578785974913, 10.12998230872479206542644840832, 10.28226613420318595849526213367, 10.33685579134013357063090394577, 11.02392676508492289876608055419

Graph of the $Z$-function along the critical line