Properties

Label 2-768-1.1-c3-0-29
Degree $2$
Conductor $768$
Sign $-1$
Analytic cond. $45.3134$
Root an. cond. $6.73152$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 0.612·5-s − 22.7·7-s + 9·9-s + 60.2·11-s − 52.9·13-s + 1.83·15-s + 47.1·17-s + 29.1·19-s + 68.2·21-s + 109.·23-s − 124.·25-s − 27·27-s + 10.4·29-s + 220.·31-s − 180.·33-s + 13.9·35-s − 408.·37-s + 158.·39-s + 360.·41-s − 236.·43-s − 5.51·45-s − 129.·47-s + 174.·49-s − 141.·51-s − 117.·53-s − 36.9·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.0547·5-s − 1.22·7-s + 0.333·9-s + 1.65·11-s − 1.12·13-s + 0.0316·15-s + 0.672·17-s + 0.352·19-s + 0.709·21-s + 0.992·23-s − 0.996·25-s − 0.192·27-s + 0.0667·29-s + 1.27·31-s − 0.953·33-s + 0.0672·35-s − 1.81·37-s + 0.651·39-s + 1.37·41-s − 0.838·43-s − 0.0182·45-s − 0.400·47-s + 0.508·49-s − 0.388·51-s − 0.305·53-s − 0.0905·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $-1$
Analytic conductor: \(45.3134\)
Root analytic conductor: \(6.73152\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 768,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
good5 \( 1 + 0.612T + 125T^{2} \)
7 \( 1 + 22.7T + 343T^{2} \)
11 \( 1 - 60.2T + 1.33e3T^{2} \)
13 \( 1 + 52.9T + 2.19e3T^{2} \)
17 \( 1 - 47.1T + 4.91e3T^{2} \)
19 \( 1 - 29.1T + 6.85e3T^{2} \)
23 \( 1 - 109.T + 1.21e4T^{2} \)
29 \( 1 - 10.4T + 2.43e4T^{2} \)
31 \( 1 - 220.T + 2.97e4T^{2} \)
37 \( 1 + 408.T + 5.06e4T^{2} \)
41 \( 1 - 360.T + 6.89e4T^{2} \)
43 \( 1 + 236.T + 7.95e4T^{2} \)
47 \( 1 + 129.T + 1.03e5T^{2} \)
53 \( 1 + 117.T + 1.48e5T^{2} \)
59 \( 1 + 262.T + 2.05e5T^{2} \)
61 \( 1 + 273.T + 2.26e5T^{2} \)
67 \( 1 - 89.4T + 3.00e5T^{2} \)
71 \( 1 + 350.T + 3.57e5T^{2} \)
73 \( 1 + 532.T + 3.89e5T^{2} \)
79 \( 1 - 166.T + 4.93e5T^{2} \)
83 \( 1 + 361.T + 5.71e5T^{2} \)
89 \( 1 + 40.3T + 7.04e5T^{2} \)
97 \( 1 + 614.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.669279091373616288122073737289, −8.890437072375400762597956535962, −7.52801820765670183269783990435, −6.75365091022357319278892968513, −6.12082521939549501365940537515, −5.02673117631291495153529473645, −3.92624868776818474894538527610, −2.96200964001524228068065483598, −1.31890091355433483197921948879, 0, 1.31890091355433483197921948879, 2.96200964001524228068065483598, 3.92624868776818474894538527610, 5.02673117631291495153529473645, 6.12082521939549501365940537515, 6.75365091022357319278892968513, 7.52801820765670183269783990435, 8.890437072375400762597956535962, 9.669279091373616288122073737289

Graph of the $Z$-function along the critical line