Properties

Label 8-768e4-1.1-c2e4-0-17
Degree $8$
Conductor $347892350976$
Sign $1$
Analytic cond. $191771.$
Root an. cond. $4.57454$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·5-s − 6·9-s + 16·13-s − 8·17-s + 108·25-s + 80·29-s + 16·37-s − 72·41-s − 96·45-s + 180·49-s + 144·53-s − 176·61-s + 256·65-s + 40·73-s + 27·81-s − 128·85-s + 136·89-s − 264·97-s + 208·101-s − 176·109-s + 328·113-s − 96·117-s + 132·121-s + 432·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 16/5·5-s − 2/3·9-s + 1.23·13-s − 0.470·17-s + 4.31·25-s + 2.75·29-s + 0.432·37-s − 1.75·41-s − 2.13·45-s + 3.67·49-s + 2.71·53-s − 2.88·61-s + 3.93·65-s + 0.547·73-s + 1/3·81-s − 1.50·85-s + 1.52·89-s − 2.72·97-s + 2.05·101-s − 1.61·109-s + 2.90·113-s − 0.820·117-s + 1.09·121-s + 3.45·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(191771.\)
Root analytic conductor: \(4.57454\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(14.03138392\)
\(L(\frac12)\) \(\approx\) \(14.03138392\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
good5$D_{4}$ \( ( 1 - 8 T + 42 T^{2} - 8 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 90 T^{2} + p^{4} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 12 p T^{2} + 9062 T^{4} - 12 p^{5} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 - 8 T + 258 T^{2} - 8 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 + 4 T + 198 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 1092 T^{2} + 534182 T^{4} - 1092 p^{4} T^{6} + p^{8} T^{8} \)
23$D_4\times C_2$ \( 1 - 516 T^{2} + 998 p^{2} T^{4} - 516 p^{4} T^{6} + p^{8} T^{8} \)
29$D_{4}$ \( ( 1 - 40 T + 1482 T^{2} - 40 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 1012 T^{2} + 112422 T^{4} - 1012 p^{4} T^{6} + p^{8} T^{8} \)
37$D_{4}$ \( ( 1 - 8 T + 1218 T^{2} - 8 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 36 T + 3302 T^{2} + 36 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 900 T^{2} + 6425702 T^{4} - 900 p^{4} T^{6} + p^{8} T^{8} \)
47$D_4\times C_2$ \( 1 - 2116 T^{2} + 7339782 T^{4} - 2116 p^{4} T^{6} + p^{8} T^{8} \)
53$D_{4}$ \( ( 1 - 72 T + 5738 T^{2} - 72 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 5762 T^{2} + p^{4} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 88 T + 8994 T^{2} + 88 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 9156 T^{2} + 41992742 T^{4} - 9156 p^{4} T^{6} + p^{8} T^{8} \)
71$D_4\times C_2$ \( 1 - 132 T^{2} + 22417862 T^{4} - 132 p^{4} T^{6} + p^{8} T^{8} \)
73$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{4} \)
79$D_4\times C_2$ \( 1 - 6516 T^{2} + 24592550 T^{4} - 6516 p^{4} T^{6} + p^{8} T^{8} \)
83$D_4\times C_2$ \( 1 - 13636 T^{2} + 114638502 T^{4} - 13636 p^{4} T^{6} + p^{8} T^{8} \)
89$D_{4}$ \( ( 1 - 68 T + 15462 T^{2} - 68 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 132 T + 21638 T^{2} + 132 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.04768040641855914320018436570, −6.76426855802276683061480539360, −6.75085265142214800656594094545, −6.43503861172733601644480021007, −6.22566617728812207218556579004, −5.81459409450596204527550246736, −5.79520011468008173507093568568, −5.76435413505731685460235336730, −5.61169481336504940163593873609, −5.01201121745033791497390879439, −4.98967070468349598792328807662, −4.67803537631472615827829871505, −4.32487101871259874572980145408, −4.07611535242803702264794815310, −3.75951139037406201394505404774, −3.35310772498921880676916585530, −3.01531973111013341368507533626, −2.80233275093591062667292651094, −2.47842774047467675162809256834, −2.23417411110678447708453411007, −1.94865925559611374108099866231, −1.66508507299746835591655952741, −1.28986370234061346779991869816, −0.74540668008873571396194302001, −0.64308671111890038849431412433, 0.64308671111890038849431412433, 0.74540668008873571396194302001, 1.28986370234061346779991869816, 1.66508507299746835591655952741, 1.94865925559611374108099866231, 2.23417411110678447708453411007, 2.47842774047467675162809256834, 2.80233275093591062667292651094, 3.01531973111013341368507533626, 3.35310772498921880676916585530, 3.75951139037406201394505404774, 4.07611535242803702264794815310, 4.32487101871259874572980145408, 4.67803537631472615827829871505, 4.98967070468349598792328807662, 5.01201121745033791497390879439, 5.61169481336504940163593873609, 5.76435413505731685460235336730, 5.79520011468008173507093568568, 5.81459409450596204527550246736, 6.22566617728812207218556579004, 6.43503861172733601644480021007, 6.75085265142214800656594094545, 6.76426855802276683061480539360, 7.04768040641855914320018436570

Graph of the $Z$-function along the critical line