Properties

Label 4-768e2-1.1-c1e2-0-51
Degree $4$
Conductor $589824$
Sign $1$
Analytic cond. $37.6076$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s − 9-s − 12·17-s + 6·25-s − 8·31-s − 4·41-s − 16·47-s + 34·49-s + 8·63-s − 32·71-s + 12·73-s − 8·79-s + 81-s − 20·89-s − 28·97-s − 24·103-s + 4·113-s + 96·119-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 12·153-s + 157-s + ⋯
L(s)  = 1  − 3.02·7-s − 1/3·9-s − 2.91·17-s + 6/5·25-s − 1.43·31-s − 0.624·41-s − 2.33·47-s + 34/7·49-s + 1.00·63-s − 3.79·71-s + 1.40·73-s − 0.900·79-s + 1/9·81-s − 2.11·89-s − 2.84·97-s − 2.36·103-s + 0.376·113-s + 8.80·119-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.970·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 589824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 589824 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(589824\)    =    \(2^{16} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(37.6076\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 589824,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.992657737159952110923654674533, −9.687819352404895063426047923888, −9.199150600618356363333291423906, −8.998327639266284776293447036244, −8.605948567033838895002997751855, −8.109292621001179927364041734470, −7.06992965408008235742663108340, −7.02636487220597968841948174938, −6.55420735276939294351881900748, −6.43427622228386769543730958206, −5.73167023113259948249081162165, −5.34799277350386073726216311847, −4.32137562834720234205738904062, −4.29370400578789576461250993928, −3.33072250231337258947255629984, −3.06310481619601238631488333900, −2.61280563257824176573263690653, −1.73207908456882757664741684628, 0, 0, 1.73207908456882757664741684628, 2.61280563257824176573263690653, 3.06310481619601238631488333900, 3.33072250231337258947255629984, 4.29370400578789576461250993928, 4.32137562834720234205738904062, 5.34799277350386073726216311847, 5.73167023113259948249081162165, 6.43427622228386769543730958206, 6.55420735276939294351881900748, 7.02636487220597968841948174938, 7.06992965408008235742663108340, 8.109292621001179927364041734470, 8.605948567033838895002997751855, 8.998327639266284776293447036244, 9.199150600618356363333291423906, 9.687819352404895063426047923888, 9.992657737159952110923654674533

Graph of the $Z$-function along the critical line