Properties

Label 4-768e2-1.1-c1e2-0-52
Degree $4$
Conductor $589824$
Sign $1$
Analytic cond. $37.6076$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s − 8·11-s − 4·17-s − 8·19-s − 2·25-s − 4·27-s + 16·33-s − 20·41-s − 24·43-s − 6·49-s + 8·51-s + 16·57-s + 8·59-s − 8·67-s + 4·73-s + 4·75-s + 5·81-s + 8·83-s − 12·89-s + 28·97-s − 24·99-s − 24·107-s + 4·113-s + 26·121-s + 40·123-s + 127-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s − 2.41·11-s − 0.970·17-s − 1.83·19-s − 2/5·25-s − 0.769·27-s + 2.78·33-s − 3.12·41-s − 3.65·43-s − 6/7·49-s + 1.12·51-s + 2.11·57-s + 1.04·59-s − 0.977·67-s + 0.468·73-s + 0.461·75-s + 5/9·81-s + 0.878·83-s − 1.27·89-s + 2.84·97-s − 2.41·99-s − 2.32·107-s + 0.376·113-s + 2.36·121-s + 3.60·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 589824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 589824 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(589824\)    =    \(2^{16} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(37.6076\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 589824,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28998804658677757680466577619, −10.07245506107097851006983775266, −9.365635563042269871264855048440, −8.636218910639623380462350540490, −8.230870359582235551156994314656, −8.214583816897408615776573430204, −7.45216473764220302007278354195, −6.91079549811893204270195542090, −6.46934467573382852912407027576, −6.35770759782183590956851336511, −5.35749205002680040951818323440, −5.30775673772913385750429218890, −4.79742178821599754690515469672, −4.41215189075674565850640628993, −3.56423687591730804419130023020, −3.02446976059117841138850052879, −2.10278277956094620876076270023, −1.80842388564724944439291765894, 0, 0, 1.80842388564724944439291765894, 2.10278277956094620876076270023, 3.02446976059117841138850052879, 3.56423687591730804419130023020, 4.41215189075674565850640628993, 4.79742178821599754690515469672, 5.30775673772913385750429218890, 5.35749205002680040951818323440, 6.35770759782183590956851336511, 6.46934467573382852912407027576, 6.91079549811893204270195542090, 7.45216473764220302007278354195, 8.214583816897408615776573430204, 8.230870359582235551156994314656, 8.636218910639623380462350540490, 9.365635563042269871264855048440, 10.07245506107097851006983775266, 10.28998804658677757680466577619

Graph of the $Z$-function along the critical line