Properties

Degree 2
Conductor $ 3^{2} \cdot 7 \cdot 11^{2} $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 0.400·2-s − 1.83·4-s − 2.30·5-s − 7-s + 1.53·8-s + 0.924·10-s − 4.49·13-s + 0.400·14-s + 3.06·16-s + 7.46·17-s + 1.34·19-s + 4.24·20-s + 4.27·23-s + 0.315·25-s + 1.80·26-s + 1.83·28-s + 1.12·29-s − 8.11·31-s − 4.30·32-s − 2.99·34-s + 2.30·35-s + 11.0·37-s − 0.540·38-s − 3.54·40-s − 1.16·41-s − 9.95·43-s − 1.71·46-s + ⋯
L(s)  = 1  − 0.283·2-s − 0.919·4-s − 1.03·5-s − 0.377·7-s + 0.544·8-s + 0.292·10-s − 1.24·13-s + 0.107·14-s + 0.765·16-s + 1.81·17-s + 0.309·19-s + 0.948·20-s + 0.890·23-s + 0.0631·25-s + 0.353·26-s + 0.347·28-s + 0.209·29-s − 1.45·31-s − 0.761·32-s − 0.513·34-s + 0.389·35-s + 1.81·37-s − 0.0876·38-s − 0.561·40-s − 0.181·41-s − 1.51·43-s − 0.252·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7623\)    =    \(3^{2} \cdot 7 \cdot 11^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{7623} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 7623,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $0.5978749805$
$L(\frac12)$  $\approx$  $0.5978749805$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;7,\;11\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{3,\;7,\;11\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 + 0.400T + 2T^{2} \)
5 \( 1 + 2.30T + 5T^{2} \)
13 \( 1 + 4.49T + 13T^{2} \)
17 \( 1 - 7.46T + 17T^{2} \)
19 \( 1 - 1.34T + 19T^{2} \)
23 \( 1 - 4.27T + 23T^{2} \)
29 \( 1 - 1.12T + 29T^{2} \)
31 \( 1 + 8.11T + 31T^{2} \)
37 \( 1 - 11.0T + 37T^{2} \)
41 \( 1 + 1.16T + 41T^{2} \)
43 \( 1 + 9.95T + 43T^{2} \)
47 \( 1 + 12.8T + 47T^{2} \)
53 \( 1 + 11.7T + 53T^{2} \)
59 \( 1 - 1.04T + 59T^{2} \)
61 \( 1 - 6.69T + 61T^{2} \)
67 \( 1 + 2.46T + 67T^{2} \)
71 \( 1 + 8.42T + 71T^{2} \)
73 \( 1 - 10.7T + 73T^{2} \)
79 \( 1 + 2.71T + 79T^{2} \)
83 \( 1 + 9.12T + 83T^{2} \)
89 \( 1 + 5.28T + 89T^{2} \)
97 \( 1 - 5.74T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.81012329297798768972840507478, −7.51452714420766797912530995091, −6.66856521398563873122638692891, −5.55192840943953888396378685097, −5.03841324052780010401483683706, −4.33250944682255053972358464983, −3.46846722258932988578118822588, −3.02238439210885220336379673957, −1.50524233469347375472435899247, −0.42557063951255206299986976594, 0.42557063951255206299986976594, 1.50524233469347375472435899247, 3.02238439210885220336379673957, 3.46846722258932988578118822588, 4.33250944682255053972358464983, 5.03841324052780010401483683706, 5.55192840943953888396378685097, 6.66856521398563873122638692891, 7.51452714420766797912530995091, 7.81012329297798768972840507478

Graph of the $Z$-function along the critical line