Properties

Degree 2
Conductor $ 3^{2} \cdot 7 \cdot 11^{2} $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·2-s + 2.64·5-s + 7-s − 2.82·8-s + 3.74·10-s + 1.74·13-s + 1.41·14-s − 4.00·16-s + 0.182·17-s − 1.74·19-s − 6.70·23-s + 2.00·25-s + 2.46·26-s − 6.70·29-s − 9.48·31-s + 0.258·34-s + 2.64·35-s − 11.4·37-s − 2.46·38-s − 7.48·40-s − 5.65·41-s − 43-s − 9.48·46-s + 0.182·47-s + 49-s + ⋯
L(s)  = 1  + 1.00·2-s + 1.18·5-s + 0.377·7-s − 0.999·8-s + 1.18·10-s + 0.483·13-s + 0.377·14-s − 1.00·16-s + 0.0443·17-s − 0.399·19-s − 1.39·23-s + 0.400·25-s + 0.483·26-s − 1.24·29-s − 1.70·31-s + 0.0443·34-s + 0.447·35-s − 1.88·37-s − 0.399·38-s − 1.18·40-s − 0.883·41-s − 0.152·43-s − 1.39·46-s + 0.0266·47-s + 0.142·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7623\)    =    \(3^{2} \cdot 7 \cdot 11^{2}\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{7623} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 7623,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;7,\;11\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{3,\;7,\;11\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
good2 \( 1 - 1.41T + 2T^{2} \)
5 \( 1 - 2.64T + 5T^{2} \)
13 \( 1 - 1.74T + 13T^{2} \)
17 \( 1 - 0.182T + 17T^{2} \)
19 \( 1 + 1.74T + 19T^{2} \)
23 \( 1 + 6.70T + 23T^{2} \)
29 \( 1 + 6.70T + 29T^{2} \)
31 \( 1 + 9.48T + 31T^{2} \)
37 \( 1 + 11.4T + 37T^{2} \)
41 \( 1 + 5.65T + 41T^{2} \)
43 \( 1 + T + 43T^{2} \)
47 \( 1 - 0.182T + 47T^{2} \)
53 \( 1 - 7.75T + 53T^{2} \)
59 \( 1 + 3.01T + 59T^{2} \)
61 \( 1 + 5.74T + 61T^{2} \)
67 \( 1 - 8.48T + 67T^{2} \)
71 \( 1 - 1.41T + 71T^{2} \)
73 \( 1 + 8.25T + 73T^{2} \)
79 \( 1 - 1.48T + 79T^{2} \)
83 \( 1 - 5.83T + 83T^{2} \)
89 \( 1 + 11.1T + 89T^{2} \)
97 \( 1 - 15.2T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.34134465725732811002088892068, −6.57847464363188516682584251713, −5.74061893542273244371402191894, −5.60404667570901566916544759158, −4.79657017080087931679147373510, −3.88392064425019373726242662572, −3.41035538409785950469209515587, −2.17182781535764302369022019343, −1.71042786823890710604135182518, 0, 1.71042786823890710604135182518, 2.17182781535764302369022019343, 3.41035538409785950469209515587, 3.88392064425019373726242662572, 4.79657017080087931679147373510, 5.60404667570901566916544759158, 5.74061893542273244371402191894, 6.57847464363188516682584251713, 7.34134465725732811002088892068

Graph of the $Z$-function along the critical line